Exposure to benzene and childhood leukaemia: a pilot casecontrol study | Journal: | BMJ Open | |----------------------------------|--| | Manuscript ID: | bmjopen-2012-002275 | | Article Type: | Research | | Date Submitted by the Author: | 27-Oct-2012 | | Complete List of Authors: | Lagorio, Susanna; National Institute of Health, National Centre for Epidemiology, Surveillance, and Health Promotion Ferrante, Daniela; University "Amedeo Avogadro" of Piemonte Orientale, Unit of Medical Statistics and Epidemiology Ranucci, Alessandra; University "Amedeo Avogadro" of Piemonte Orientale, Unit of Medical Statistics and Epidemiology Negri, Sara; Fondazione Salvatore Maugeri, Centro Ricerche Ambientali Sacco, Paolo; Fondazione Salvatore Maugeri, Centro Ricerche Ambientali Rondelli, Roberto; Italian Association of Paediatric Haematology and Oncology (AIEOP), Operation Office, Sant'Orsola Malpighi Hospital Cannizzaro, Santina; Italian Cancer League, Ragusa Section Torregrossa, Valeria; University of Palermo, Department of Sciences for Health Promotion Cocco, Pierluigi; University of Cagliari, Department of Public Health, Occupational Health Section Forastiere, Francesco; Lazio Regional Health Service, Department of Epidemiology Miligi, Lucia; ISPO Cancer Prevention and Research Institute, Occupational and Environmental Epidemiology Unit Bisanti, Luigi; Milan Local Health Agency, Epidemiology Unit Magnani, Corrado; University "Amedeo Avogadro" of Piemonte Orientale, Unit of Medical Statistics and Epidemiology | | Primary Subject Heading : | Epidemiology | | Secondary Subject Heading: | Oncology, Paediatrics, Public health | | Keywords: | Paediatric oncology < PAEDIATRICS, Exposure assessment, Benzene | | | | SCHOLARONE™ Manuscripts # Exposure to benzene and childhood leukaemia: a pilot case-control study Susanna Lagorio¹, Daniela Ferrante², Alessandra Ranucci², Sara Negri³, Paolo Sacco³, Roberto Rondelli⁴, Santina Cannizzaro⁵, Maria Valeria Torregrossa⁶, Pierluigi Cocco⁷, Francesco Forastiere⁸, Lucia Miligi⁹, Luigi Bisanti¹⁰, Corrado Magnani² ## **Corresponding Author** Dr. Susanna Lagorio (MD, Senior Scientist) National Centre of Epidemiology, Surveillance and Health Promotion Viale Regina Elena, 299 - 00161 Rome (Italy) Tel. +390649904304; Fax +390649904305 e-mail susanna.lagorio@iss.it Keywords: acute lymphoblastic leukaemia, benzene, extremely low frequency magnetic fields (ELF-MF), biomarkers, children, participation bias, confounding, epidemiologic methods. Word count: 4552 ¹National Centre of Epidemiology, National Institute of Health, Rome, Italy ²Unit of Medical Statistics and Epidemiology, CPO Piemonte and University "Amedeo Avogadro" of Piemonte Orientale; Alessandria, Novara and Vercelli, Italy ³Fondazione Salvatore Maugeri, Centro Ricerche Ambientali; Padova and Pavia, Italy ⁴Italian Association of Paediatric Haematology and Oncology (AIEOP), Operation Office, Sant'Orsola Malpighi Hospital; Bologna, Italy ⁵Italian Cancer League, Ragusa Section; Ragusa Ibla, Italy ⁶Department of Sciences for Health Promotion, University of Palermo; Palermo, Italy ⁷Department of Public Health, Occupational Health Section, University of Cagliari; Cagliari, Italy ⁸Department of Epidemiology, Lazio Regional Health Service; Rome, Italy Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute; Florence, Italy ¹⁰Epidemiology Unit, Milan Local Health Agency; Milan, Italy #### ABSTRACT ## **Objectives** *Main purpose*: to assess the feasibility of a measurement-based assessment of personal benzene exposure in case-control studies of paediatric cancer. Additional aims: to identify the main sources of variability in personal exposure; to evaluate the performance of two benzene biomarkers; to verify the occurrence of participation bias; to check whether exposures to benzene and to 50 Hz magnetic fields were correlated, and might exert reciprocal confounding effects. ## Design Pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine. ## **Participants** Full-participation obtained from 46 cases and 60 controls, with low dropout rates before 4 repeats (11% and 17%); additional 23 cases and 80 controls allowed collection of outdoor air samples only. #### Results The average benzene concentration in personal and outdoor air samples was 3 $\mu g/m^3$ (SD 1.45) and 2.7 $\mu g/m^3$ (SD 1.41), respectively. Personal exposure was strongly influenced by outdoor benzene concentrations, higher in the cold seasons than in warm seasons, and not affected by gender, age, area of residence, or caseness. Urinary excretion of S-PMA and personal benzene exposure were well correlated. Outdoor benzene levels were lower among participant controls compared to non-participants, but did not differ between participant and non-participant cases; the direction of the bias was found to depend on the cut-point chosen to distinguish exposed and unexposed. Exposures to benzene and ELF-MF were positively correlated. ## Conclusions Repeated individual measurements are needed to account for the seasonal variability in benzene exposure, and have the additional advantage of increasing the study power. Measurement-based assessment of benzene exposure in studies of paediatric cancer, although financially and logistically demanding, appear feasible and acceptable to children and their parents. #### Article focus - Benzene is an established causative factor for acute non lymphocytic leukaemia, and there is limited evidence limited evidence for an association between exposure to this agent and other hematologic neoplasms including acute lymphocytic leukaemia. Exposure to benzene would increase the risk of leukaemia at relatively high levels of lifetime environmental exposure (≥120 ppb). While it seems unlikely that benzene is a major cause of leukaemia in the general population, children may represent a subpopulation with increased susceptibility. Available studies of benzene and childhood leukemia have provided inconsistent results, possibly due to the use of surrogate exposure proxies, and lack of analyses by leukaemia subtype. To get further insights on this topic, epidemiological studies based on objective estimates of environmental exposure to benzene have been recommended. - Our pilot study was aimed at evaluating the logistic feasibility of an assessment of personal benzene exposure based on repeated individual measurements within a case-control study of childhood leukemia. Additional aims were: (i) to estimate the level of benzene exposure in children and assess if, and how much, exposure variability was affected by a number of putative determinants; (ii) to evaluate the performance of urinary levels of *t-t*-muconic acid (MA) and sulpho-phenylmercapturic acid (S-PMA) as benzene biomarkers in children; (iii) to assess the presence of participation bias (which occurs when adhesion to the study protocol is associated with both the level of exposure and the presence / absence of the disease); (iv) to determine whether exposures to benzene and to 50 Hz magnetic fields (ELF-MF) were correlated, so that they could exert reciprocal confounding effects in the analyses of their relationship with childhood leukemia. # **Key messages** - Eligibility for inclusion was restricted to 108 cases and 194 matched controls, aged 2 to 12 years at the time of the survey. Full participation rates were low (cases 43%, controls 31%), but additional 21% of cases and 41% of controls accepted the outdoor monitoring. Adherence of full participants to the scheduled four seasonal repeats was very satisfactory (cases 89%, controls 83%). - Personal exposure was strongly influenced by outdoor benzene concentrations, was higher in the cold seasons than in warm seasons, and was not affected by gender, age, area of residence, or caseness. Personal benzene exposure and urinary excretion of S-PMA (but not of MA) were well correlated. Outdoor benzene levels were lower among participant controls compared to non-participants, but did not differ between participant and non-participant cases (a participation bias was indeed present). A positive association between exposures to benzene and ELF-MF was observed. Epidemiologic studies of paediatric cancer and estimates of environmental benzene exposure based on repeated seasonal measurements, although challenging, appear logistically feasible and acceptable to children and their parents. # Strengths and limitations - To our knowledge, this is the first pilot
study of childhood leukaemia and measured personal benzene exposure. Its also has the merit of having addressed a number of methodological problems besides logistic feasibility issues. - Due to logistic reasons and resource constraints, the study size was very small. It must also be stressed that the expected greater accuracy of measurement-based exposures estimates, compared to surrogate exposure proxies, does not necessarily correspond to increased construct validity; this is especially true when measurements are used for retrospective postdiagnosis exposure assessments. #### **INTRODUCTION** Benzene is a ubiquitous air pollutant, that needs to be metabolized to become carcinogenic.[1-2] Benzene exposure and acute non lymphocytic leukaemia are causally related, while there is limited evidence for an association between exposure to this agent and acute or chronic lymphocytic leukaemia, multiple myeloma, and non-Hodgkin's lymphoma.[3] Exposure to benzene would increase the risk of leukaemia at levels of ≥40 ppm-years of occupational cumulative exposure, equivalent to a lifetime (76 years) environmental exposure of ≥120 ppb.[4] Due to the established carcinogenicity of benzene, WHO has not developed any guideline value for this chemical in air, while indicating that ambient benzene concentrations of 17, 1.7 and 0.17 $\mu g/m^3$ are associated with excess lifetime risks of leukaemia of 10^{-4} , 10^{-5} and 10^{-6} , respectively.[5-6] While it seems unlikely that benzene is a major cause of leukaemia in the general population exposed in the ppb range, children may represent a subpopulation with increased susceptibility on intake or on key pharmacokinetic / pharmacodynamic processes.[1, 3] Childhood leukaemias have distinctive features compared to leukaemias in adults. In precursor B cell acute lymphoblastic leukaemia (pre-B ALL) and some cases of acute myeloid leukaemia (AML), a first initiating genetic event has been shown to occur *in utero*, at a rate of up to 1% (for TEL-AML1 translocations in pre-B ALL). Further genetic changes are required to create a malignant clone. Ionizing radiation, benzene, alkylators and topoisomerase II inhibitors are among the few confirmed environmental risk factors for AML, while delayed, dysregulated responses to common infections are likely to play a major role in the conversion of pre-leukemic clones into overt ALL.[7] Findings from available studies of benzene and childhood leukaemia are inconsistent, possibly due to the use of indirect estimates of exposure and lack of analyses by leukaemia subtype.[8] To advance current understanding of benzene health effects and susceptibility, studies of paediatric cancers that include estimates of environmental exposure to benzene, rather than surrogate exposure indicators, have been recommended.[9] Major challenges in pursuing this suggestion include the space- and time-variability of ambient benzene levels, the low exposure levels in children, and the inherent susceptibility of case-control studies (the design of choice for etiological studies of rare disease like childhood cancer) to selection and information bias. We evaluated the logistic feasibility of an assessment of benzene exposure based on repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine, in a pilot investigation within an Italian case-control study on environmental risk factors for childhood leukaemia (SETIL). Additional objectives of the pilot study were: - to investigate the relationship between level personal exposure to benzene and putative determinants (atmospheric benzene, second-hand tobacco smoke, individual traits); - to assess the performance of *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) as benzene biomarkers in children; - to verify the occurrence of participation bias from differential adhesion to the benzene measurement study, and estimate the amount and direction of the distortion; to check whether exposures to benzene and to extremely low frequency magnetic fields (ELF-MF) were correlated, and might eventually exert reciprocal confounding effects on the relationship with childhood leukaemia. #### **METHODS** ## Study population Incident cases of childhood leukaemia from 14 Italian regions, aged 0 to 10 years at diagnosis in 1998-2001, were eligible for enrolment in the SETIL study. Cases were ascertained through the national registry run by the Association of Paediatric Haematology and Oncology (AIEOP). Controls, matched to cases (2:1 ratio) on gender, date of birth, and region, were randomly selected from population lists. Information on several items concerning the children, their next-of-kin and dwellings, was collected by interview of parents. All interviewed families were invited to participate in a measurement study of indoor ELF-MF, while subsets of participants were asked to join two side-investigations, on exposure to gamma radiation and benzene, respectively. Eligibility for the benzene pilot study was restricted to 108 childhood leukaemia cases from seven Italian provinces (Turin, Milan, Florence, Rome, Catania, Palermo, and Cagliari), diagnosed between July 2000 and December 2001, and 194 matched controls. The study protocol was approved by the Piedmont Ethical Committee on 14 January 2002. # Sampling strategy and devices Due to the high daily and seasonal variability of atmospheric benzene concentrations, the protocol called for four repeated seasonal one-week samplings of breathing zone air per child over one year ("personal" air samples), with concurrent collection of urine samples and atmospheric air samples in proximity of the children's homes ("outdoor" air samples). Outdoor air sampling would also be performed, with an identical strategy, near the homes of all eligible non-participants. To study the day-to-day variability in exposure, 24-h repeated personal and indoor samples during four season-specific weeks would be collected from a subset of children and related homes. Personal air samples were collected by passive samplers (Radiello® radial symmetry diffusive sampler) worn by the child during the day and placed at the bedside at night. Radiello® samplers were also used to collect outdoor air samples, placed near the entrance of the dwellings (within 1 meter), at a vertical distance from the ground suitable to avoid infringements (2-2.5 m), stored in a plastic case to avoid rain or snow. At retrieval, the adsorbing cartridges were removed from the diffusive bodies and placed into glass storage tubes. The ID code of the child, along with dates and times of sampling start and end, were recorded on self-adhesive labels stuck on the tubes. The cartridges were sent to a single laboratory (Fondazione Salvatore Maugeri, Padova) for the chemical analyses. Daily urine samples (10 ml, from the last micturition before sleep) were collected for 7 subsequent days (70 ml per week) during each seasonal survey. The daily samples were pooled in one plastic vial, and kept in the freezer compartment of the home refrigerator until collection at the end of the week. The vials were transported to the local research centre in cool bags, and stored at –5 °C until delivery (packed in dry ice and usually in 2 weeks) to the laboratory (Fondazione Salvatore Maugeri, Pavia). Field work began between March 2002 and January 2003, and ended in October 2003 - July 2004, depending on the local research centre. # **Chemical determinations** Benzene concentrations in air sample were determined by an automated thermal desorber (ATD400, Perkin Elmer) coupled to a capillary gas-chromatography system (Autosystem XL, Perkin Elmer). The expanded uncertainty of the method, in the range 2.4 to 14.3 μ g/m³, was shown to be 18%.[10] The limits of detection and quantification, over 1 week exposure, are 0.05 μ g/m³ and 0.1 μ g/m³. The urine analyses were performed using a high pressure liquid chromatography system (Alliance 2690, Waters) equipped with a spectrometric (SM) detector (ZQ, Waters) following a preliminary step of purification of the samples on pre-activated solid phase extraction (SPE) cartridges. The limit of detection (LOD), coefficient of variation (CV) and accuracy of the method were: LOD = 1 μ g/L, CV % = (1.22)-(1.10), accuracy % = (- 2.39)-(3.36) for S-PMA; LOD = 20 μ g/L, CV % = (1.33)-(1.06), accuracy % = (- 2.18)-(3.27) for MA; LOD = 1 μ g/L, CV % = (1.25)-(1.09), accuracy % = (- 2.29)-(3.33) for cotinine. Further details are provided in Appendix 1. The chemical determinations were completed by May 2005. ## Statistical analyses Measurements below the chemical-specific detection limits were assigned half such values and included in the analyses. The relationships between personal exposure to benzene and putative determinants (as well as between urinary excretion of benzene metabolites, benzene intake, and other covariates) were assessed by generalized least squares (GLS) models for repeated measurements (STATA v. 11, xtreg procedure). The GLS model is: $y_{it} = \alpha + X_{it}B + u_{it} + e_{it}$, where i (1 to n) is the number of observations collected at time t (1 to 4) and u_{it} and e_{it} are the error components. As concentrations of benzene and urinary analytes were log-normally distributed, we always included in the models log-transformed dependent variables. We used the odds ratio (OR), calculated from generalized estimating equations (GEE) for repeated individual measurements (STATA v. 11, procedure xtgee), to estimate the association between benzene exposure and dichotomous variables such as case-control or participation status. The general equation of the GEE model is $g\{E(y_j)\}=x_j\beta$, where g is the link function, herein a logit function. We calculated a participation bias factor following the method suggested
by Greenland [bias factor = $(S_{1a}*S_{0b})/(S_{0a}*S_{1b})$], where S_{1a} , S_{0a} , S_{1b} , and S_{0b} denote the probabilities of selection (i.e. full participation in the benzene study) for exposed cases, unexposed cases, exposed controls, and unexposed controls.[11] When the bias factor equals 1, there is no bias, when it is above or below 1 the true OR will be biased respectively upward or downward by the magnitude of this factor. Multiple regression models were used to analyze the relation between estimated exposures to benzene and ELF-MF. ## **RESULTS** # Participation and sampling outcome Out of 108 cases and 194 controls eligible for inclusion, 46 cases and 60 controls (43% and 31%) agreed to take full part in the benzene side-study (Figure 1). In addition, the parents of 23 cases and 80 controls who refused the personal exposure assessment accepted the outdoor monitoring (partial participation = 21% and 41%). Altogether 1467 air samples were collected. A small percentage (2%) were lost during monitoring (22 samplers stolen, 2 sampler plates broken, 3 cartridges lost), transport (8 missing labels) or chemical analysis (2 cartridges broken on arrival at the laboratory; 1 sample lost due to equipment failure). Benzene measurements from the day-to-day variability sub-study (19% of the total) could not be used because only four control children accepted the 24-h sampling scheme, and were replaced by the calculated weekly averages. A further 20% of benzene measurements was removed from the data-set due to lack of compliance with the study protocol (indoor samples collected in place of the personal ones from children refusing to wear the sampler; time-or place-mismatch of personal and outdoor samples; "orphan" personal or outdoor samples; duplicate season-specific measurements; non-participants replaced with children ineligible for the benzene side-study]. For the same reasons, 107 out of 417 chemical determinations in urine (26%) were discarded. Three cases and 5 controls were excluded from one or more analyses due to lack of complete measurement sets in all seasonal series and, although 89% and 83% of full-participant cases and controls did adhere to all four seasonal surveys, only 37% and 43% of them had four repeated analyzable observations. ## Personal characteristics of the children The families of cases participating in full to the benzene study had been interviewed on average 1.3 years (SD 0.47) after the date of diagnosis, and the control-families 1.5 years (SD 0.46) after the corresponding reference date. The delay between diagnosis and the first series of benzene measurements was 2 years (SD 0.53) for both cases and controls. Cases and controls were comparable in terms of gender, age, and father's attained educational level (Table 1). A higher proportion of controls than cases had both parents smoking, and control-mothers were more educated than case-mothers. There were similar proportions of only children in the case and control groups, while firstborn children were more frequent among controls than cases. Early schooling (attendance of crèche) was more common in cases than in controls. At the time of the benzene survey, most children were still living in the home occupied at birth or in the house they moved into after birth but before the date of diagnosis (cases 95%; controls 91%). ## Level, variability, and determinants of personal exposure to benzene The analyses of level, variability and determinants of personal exposure to benzene were based on 43 cases (39 ALL and 4 AML) and 56 controls, with 261 valid pairs of benzene concentrations in breathing zone and outdoor air (110 from cases and 151 from controls). A large proportion of these children (35%) had a single pair of concurrent measurements, unevenly distributed by season, with a disproportionally high number of summer samples (30 out of 35, all but one from a single centre). The distributions, overall and by season, of benzene concentrations in personal and outdoor air samples, and of cotinine, MA and S-PMA in urine are described in Table 2. Personal exposure to benzene was log-normally distributed (Shapiro-Wilk test = 0.938, p<0.001), and the mean benzene level over the individual yearly averages was 3 μ g/m³ (0.92 ppb). The distribution of benzene outdoor concentration was skewed to the left in all seasons and the yearly averages were log-normally distributed as well (Shapiro-Wilk test = 0.948, p = 0.001); the average yearly benzene level near the children's homes was $2.7 \,\mu\text{g/m}^3$ (0.83 ppb). Both outdoor benzene concentrations and personal exposure levels were higher in the cold seasons (autumn-winter) than in the warm ones (spring-summer). The European limit for benzene in air (5 μ g/m³) was exceeded by 5% of the yearly average outdoor concentrations, and by 8% of the yearly average levels in breathing zone air samples. A large proportion of autumn and winter measurements were above 5 $\mu g/m^3$ (35% and 25% outdoor; 26% and 30% of the personal exposure estimates). Cases and controls had similar levels of personal exposure to benzene: the leukaemia OR for a unit increase (1 μ g/m³) in personal benzene exposure was 0.93 (95% CI 0.77-1.13) adjusting for gender, age at the benzene survey (2-4; 4-6; 6-12 years), cotinine in urine (μ g/g creatinine), season, and province of residence (Turin; Milan; Florence - Rome; Catania - Palermo - Cagliari). A similar lack of association was found between the odd of disease and benzene concentration outside the children's homes [OR 0.94 (95% CI 0.80-1.09)], controlling for gender, age, smoking habits of the parents at the interview (non-smokers, mother or father smoking; both parents smoking), season, and province of residence. Further adjustment for birth order and age at first schooling had no material effect on the observed leukaemia-benzene relationship [personal exposure: OR 0.92 (95% CI 0.75-1.13); outdoor benzene: OR 0.95 (95% CI 0.81-1.13)]. As cases and controls had comparable levels of benzene exposure, we carried out the analyses illustrated in the forthcoming paragraphs on the whole data-set, although always controlling for caseness. Urinary cotinine concentration (µg/g of creatinine) was higher in children of smoking parents compared to children of non-smokers, and children with both parents smoking excreted a larger amount of cotinine than children with one parent smoking (Appendix Table A). Cotinine levels were higher in winter than in other seasons, and higher in children from central and southern Italy (Florence, Rome, Palermo, Catania, Cagliari) than in children from northern provinces (Turin and Milan). The high between- *vs* within-subject R² ratio is worth noting. Personal benzene exposure was strongly influenced by outdoor benzene concentrations (Table 3-A), and apparently not affected by gender or age; the season showed a modifying effect, with increasing levels of personal exposure during autumn and winter; the fraction of variability explained by the model was higher for the within-subject component than for the between-subject one. Exposure to second-hand tobacco smoke (estimated by cotinine excretion or by parental smoking habits) showed a trivial influence on personal exposure to benzene. The inclusion of urinary cotinine (µg/g creatinine) in the model described in Table 3-A, slightly decreased its goodness of fit [R^2 overall = 0.46; Wald χ^2 =189.49; R^2 within = 0.55; R^2 between = 0.35; β (cotinine) = 0.012; 95% CI = -0.003; 0.03)]; an alternative model, including smoking habits of the parents, did not perform any better [R^2 overall = 0.46; Wald χ^2 =216.44; R^2 within = 0.52; R^2 between = 0.39; β (one parent smoking) = 0.14; 95% CI = -0.02; 0.31; β (both parents smoking) = 0.17; 95% CI = -0.06; 0.39]. Children from central Italy (Florence and Rome) tended to have lower benzene concentrations in breathing zone air samples compared to residents in other provinces, all other things being equal (Table 3-A), possibly because of residual confounding from lack of samples collected in Rome other than in summer. We tried to verify this hypothesis by restricting the analyses to children with at least two series of measurements in different seasonal periods (cold and warm). The dataset reduced to 61 subjects (25 cases and 36 controls) and 220 pairs of personal-outdoor benzene measurements. Actually, children from Florence still showed (not significantly) lower levels of personal exposure to benzene (β = - 0.27; 95% CI = -0.56; 0.03; p =0.074) compared to children from Turin. In the restricted data-set, however, independent effects of both outdoor benzene and urinary cotinine levels on personal benzene exposure were observed (Table 3-B). ## Benzene intake and urinary excretion of benzene metabolites Ninety-eight children (43 cases and 55 controls) and 310 pairs of urine and breathing zone air measurements (138 from cases and 172 from controls) were available for the analyses of the urinary excretion of benzene metabolites (MA and S-PMA) in relation to personal exposure to benzene. Urinary concentrations of S-PMA (In μ g/g creatinine) were related to personal exposure to benzene (Table 4, Model 1). Youngest children (2-4 years at the benzene survey) excreted higher level of S-PMA compared to children aged 6-12 years, all other conditions being equal, and urinary concentration of S-PMA were higher in samples collected during the cold seasons compared to spring samples. The model, however, explained just 19% of the overall S-PMA variability. In an alternative model, including outdoor benzene concentrations and urinary cotinine in place of personal benzene exposure, we also observed an effect of the nicotine biomarker on S-PMA excretion (Table 4, Model 2). On the contrary, neither benzene concentrations in breathing zone air samples, nor outdoor benzene concentrations or cotinine
levels explained the intra- and inter-individual variability in urinary levels of MA, controlling for gender, age, season, area of residence, and caseness (data not shown). ## Bias due to differential participation Available for the analysis of participation bias were 66 cases (43 full-participant and 23 partial-participant) and 136 controls (56 and 80), with 652 measurements of outdoor benzene concentrations (135 and 175 from full-participant cases and controls; 81 and 261 from partial-participant cases and controls). Benzene concentrations near the homes of full-participant controls were significantly lower than those in proximity of partial-participants' dwellings (OR = 0.88; 95% CI 0.80-0.97), adjusting for gender, age, season and place of residence, while there was no difference in ambient benzene levels between participant and non-participant cases (OR = 0.95; 95% CI 0.82-1.09). As participation in the study was also associated with the case-control status, assuming a causal association between exposure and disease, a selection bias might ensue. However, as parents of more exposed controls were less willing to accept to be interviewed, an upward distortion would be expected, which is at odds with the apparent lack of association between personal benzene exposure and leukaemia risk in the current study. To the aim of the current analysis, personal exposure to benzene was dichotomized around the median (3.25 μ g/m³), the 75th percentile (4.34 μ g/m³) or 5 μ g/m³ (the current limit for airborne benzene in Europe). The amount and direction of bias were found to depend on the cut-point chosen (Appendix Table B), whereas no bias is expected when the exposure is categorized around the median (bias factor = 1.03), and biases in the opposite directions are predicted using cut-off at p75 and at 5 μ g/m³ (0.64 and 1.42, respectively). #### Relationship between exposures to benzene and ELF-MF Children with benzene and ELF-MF measurements made at the same house qualified for inclusion in the analysis of the relationship between estimated exposures to these agents. As only 35 cases and 46 controls met such criterion when benzene concentrations in breathing zone air samples were used as exposure indicator, we performed the analysis on 48 cases and 77 controls with place-comparable pairs of average yearly outdoor benzene concentration ($\mu g/m^3$) and 48 h TWAs of ELF-MF level in the child's bedroom ($\ln \mu T$). There was a positive association between estimated exposures to ELF-MF (dependent variable) and benzene (β = 0.177; 95% CI 0.06-0.29; p = 0.002); the multivariable regression model (including gender, age, province of residence, caseness, and participation in the benzene pilot study as covariates) explained 16% of the variability in the dependent variable [F (10, 114 df) = 2.13; p> F = 0.0271]. A steeper increase in ELF-MF level per unit increase in outdoor benzene concentration (β = 0.520; 95% CI 0.09-0.95; p = 0.019) was seen among the 81 children fully participating in the benzene pilot-study compared to the 44 partial-participants (Appendix Table C). Similar results, with a more accentuated increase in indoor magnetic induction level per unit increase in outdoor benzene concentration [β = 0.272; 95% CI = 0.09-0.45; p(t) = 0.003; R² = 0.19], were observed in the restricted data-set of 86 children with \geq 2 weekly samplings in alternate seasons. #### **DISCUSSION** We have carried out a pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated individual measurements made on average two years after diagnosis. The pilot study included side-investigations aimed at evaluating the performance of two biological indicators of benzene exposure in children, at estimating amount and direction of a possible participation bias, and at assessing the relation between estimated exposures to benzene and ELF magnetic fields. Due to the relatively low incidence of childhood cancers (10-15 for 100,000 person-years in the 0-14 year range in most industrialized countries), the case-control approach is the design of choice for analytical epidemiologic studies about potential risk factors for these diseases. Such a study design, however, is inherently prone to measurement errors stemming from the retrospective reconstruction of the exposures of interest, and to differential participation leading to control samples not representative of the study base. Therefore, findings from observational epidemiologic studies of postulated determinants for childhood malignancies are often inconsistent and always require a cautious and thoughtful interpretation.[12] Although based on small numbers, some of the findings from the current study have a certain factual and methodological interest. Repeated samplings of breathing and outdoor air are indeed needed to account for the seasonal variability in environmental benzene levels.[13-14] On average, children participating in the current study appear to experience mean yearly levels of personal exposure to benzene not exceeding the European guidelines (although 8% percent of the vearly mean levels were above $5 \, \mu g/m^3$). What we *a priori* considered the main sources of benzene exposure for children (ambient benzene levels and second-hand tobacco smoke) explained no more than half of the overall variability in personal exposure, which indicates the need to identify other sources of exposure particularly relevant, perhaps, during the cold seasons. In fact, in autumn-winter compared to spring-summer, we observed higher levels of personal exposure to benzene, of urinary cotinine and of S-PMA excretion, all other things being equal. These findings might be due to the lower ventilation rates in homes and schools during the cold seasons, to winter-specific sources of indoor benzene concentrations not considered in the current survey (e.g. fireplaces or other combustion sources), and/or to the seasonal variability in daily patterns of time spent in different micro-environments (e.g. within cars or buses).[15] Some case-control studies have suggested an association between exposure to traffic density and childhood leukaemia;[16-19] however, negative findings have also been reported.[20-23] Positive associations between incidence of ALL in children and residential proximity to petrol stations were observed in three case—control studies.[21, 24-25] An increased risk of childhood leukaemia in relation to estimated exposure to benzene was observed in a small Italian study,[26] but not in a much larger case-control study carried out in Denmark and based on a sophisticated and validated exposure modelling.[27] To our knowledge there is no previous study of childhood leukaemia and measured personal benzene exposure. Moreover, as only children aged 0 to 10 years at diagnosis were eligible for the SETIL study, the large majority of cases included in the current investigation were pre-B ALL. Cases and controls did not differ in terms of exposure to benzene, estimated either by benzene level in personal air samples or through outdoor benzene concentration, but the interpretation of this finding is hampered by the retrospective exposure assessment and the low statistical power of this preliminary investigation. That notwithstanding, due to the design based on repeated individual observations, the risk estimates have quite narrow confidence intervals. Thus the findings from this pilot study, in accordance with the limited evidence for an association between exposure to benzene and ALL,[3-4] might also suggest that the levels of benzene exposure experienced by children living in Italian towns do not entail a detectable increase in the risk of ALL. Current perspectives on the causes of childhood leukaemia increasingly point towards an etiologic role of altered patterns of infections and related immune stimulation during the first years of life, and one piece of supporting evidence is the consistent observation of an inverse association between ALL and day-care attendance. [28] Studies of childhood ALL and birth order, on the other hand, have provided inconsistent result. [29] Neither age at first schooling, nor birth order confounded the relation between childhood leukaemia and indicators of benzene exposure in the current study. S-PMA concentration measured in repeated weekly samples of the last micturition before sleep was found to reflect personal exposure to benzene, although the available covariates explained a small fraction of the within- and between-subject variability of this benzene metabolite. This is a quite surprising result, considering that S-PMA is believed to represent less than 1% of urinary benzene metabolites for exposures to benzene at air concentrations between 0.1 and 10 ppm.[30] Benzene exposure proved not able to explain the variability of MA urinary excretion observed in our children, consistent with findings from a previous Italian study.[31] The low statistical power of the study, the low level of benzene exposure, and the lack of adjustment for the confounding effect of dietary intake of sorbic acid (a common food additive), may explain this finding.[32] Full-participation rates were higher among cases than controls. Notwithstanding the fairly satisfactory proportions of children with measured outdoor benzene concentrations (61% and 70% of eligible cases and controls), the degree of partial-participation was lower among non- We observed a differential participation bias, which underscores the need to plan parallel bias analyses in any case-control study.[33] The dependence of the participation bias factor on the cutpoint chosen to dichotomize the exposure variable is of methodological interest. participant cases (21%) than among non-participant controls (41%). The positive association between the 48 h TWA of ELF-MF induction in the child's bedroom and the average yearly concentrations of outdoor benzene
will need consideration in the interpretation of findings from the analyses of childhood leukaemia risk in relation to 50 Hz MF in the SETIL case-control study. Incidental failures during sample collection, transport or chemical analysis accounted for a negligible proportion of lost air or urine samples. However, substantial percentages of chemical measurements could not be included in current analyses because of misunderstanding of the sampling protocol. The day-to-day variability sub-study was clearly too demanding to be acceptable. In conclusion, the current pilot study suggests that epidemiologic studies of childhood leukaemia risk and measurement-based estimates of exposure to benzene are challenging but logistically feasible (provided that the study protocol specifies every single sampling detail and nothing is considered so obvious as to be omitted). Such an exposure assessment method could be considered by epidemiologists willing to involve in the "genome - exposome" approach to gain further insight into the relationship between benzene exposure and childhood leukaemia risk, with priority given to AML.[4, 34] #### **ACKNOWLEDGEMENTS** The authors acknowledge the relevant contributions provided by Dr. Vincenzo Cocheo, Dr. Sergio Ghittori and Dr. Luciano Maestri (Fondazione Salvatore Maugeri) whose untimely death prevented their seeing the results of this study. The authors thank Prof. Lorenzo Gafà for his strong support to the carrying out of the research in Sicily, Caterina Boaretto (Fondazione Salvatore Maugeri) for her skilful collaboration in the analysis and quality control of the air samples, along with Patrizia Legittimo, Anna Maria Badiali, Cristina Fondelli, Alessandra Benvenuti (Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence); Paolo Guidotti (ITI, Florence); Giuliana Buscema (Italian Cancer League, Ragusa Section), Simona Trapani, Rosalia Maria Valenti (University of Palermo), Vanda Macerata (CPO Piemonte) for data collection, recording, and quality control. # **FUNDING** The current investigation was co-funded by the Italian Ministry of Health (passive samplers and chemical determinations), the Italian Association for Research on Cancer along with the Ministry of University and Research (personnel, travel, consumables, and computing), and the Piedmont Region "Ricerca Sanitaria Finalizzata" (statistical analyses). ## **COMPETING INTERESTS** None. #### **DATA SHARING STATEMENT** Additional explanatory material is available to everyone on request. The dataset is available to fellow researchers for further joint analyses, on request to the corresponding author, and pending approval by the co-authors. ## **CONTRIBUTORSHIP** Susanna Lagorio designed the study, planned the statistical analyses, and drafted the manuscript. Daniela Ferrante carried out the statistical analyses. Alessandra Ranucci was in charge of the data management, quality control and descriptive statical analyses. Paolo Sacco and Sara Negri collaborated to the study design, and were responsible for the chemical analyses. Roberto Rondelli, as manager of the AIEOP childhood leukaemia registry, performed the case ascertainment. Santina Cannizzaro, Valeria Torregrossa, Pierluigi Cocco, Francesco Forastiere, Lucia Miligi, Luigi Bisanti, and Corrado Magnani were the principal investigators of the local centres collaborating to the benzene pilot study in the framework of the SETIL multicentre case-control study. All the authors critically revised the early drafts, collaborated to the discussion of the study findings, and approved the final version of the manuscript. ## REFERENCES - Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for benzene. Atlanta, GA U.S. Department of Health and Human Services, Public Health Service 1997. - 2. Smith MT, Zhang L, McHale CM, et al. Benzene, the exposome and future investigations of leukemia etiology. *Chem Biol Interact* 2011;192:155–59. - 3. International Agency for Research on Cancer (IARC). A review of human carcinogens. F. Chemical agents and related occupations. Lyon (France): IARC Press, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 100, 2012. - Environmental Protection Agency (EPA). Carcinogenic effects of benzene: an update. Washington, DC: National Center for Environmental Health, Office of Research and Development, EPA/600/P-97/001F, 10 April 1998. - 5. World Health Organization (WHO). Benzene. In: Air quality guidelines for Europe, second edition. Copenhagen: WHO Regional Publications, European Series, No. 91 2000. - 6. World Health Organization (WHO). Exposure to benzene: a major public health concern. Geneva: WHO Document Production Services 2010. - 7. Eden T. Aetiology of childhood leukemia. Cancer Treat Rev 2010;3:286–97. - 8. Pyatt D, Hays S. A review of the potential association between childhood leukemia and benzene. *Chem Biol Interact* 2010;184:151-64. - 9. Smith MT. Advances in understanding benzene health effects and susceptibility. *Annu Rev Public Health* 2010;31:133–48. - 10. Cocheo C, Boaretto C, Pagani D, et al. Field evaluation of thermal and chemical desorption BTEX radial diffusive sampler Radiello[®] compared with active (pumped) samplers for ambient air measurements. *J Environ Monit* 2009;11: 297-306. - 11. Greenland S. Basic methods for sensitivity analysis and external adjustment. In: Rothman KJ, Greenland S (Eds). *Modern Epidemiology*. 2nd ed. Philadelphia: Lippincott, Williams & Wilkins: 1998:343–58. - 12. Linet MS, Wacholder S, Hoar Zahm S. Interpreting epidemiologic research: lessons from studies of childhood cancer. *Pediatrics* 2003;112:218-32. - 13. Fuselli S, De Felice M, Morlino R, Turrio-Baldassarri L. A three year study on 14 VOCs at one site in Rome: levels, seasonal variations, indoor/outdoor ratio and temporal trends. *Int J Environ Res Public Health* 2010;7:3792-803. - 14. Regione Toscana. Progetto INDOOR: studio sui comfort e sugli inquinanti fisici e chimici nelle scuole (2004-2006). Firenze: Regione Toscana, Rapporti di Ricerca 371.7109455 2011; http://www.regione.toscana.it/regione/export/RT/sito- - RT/Contenuti/sezioni/salute/visualizza asset.html 128139851.html (last accessed 30 July 2012). - 15. Fondelli MC, Bavazzano P, Grechi D, et al. Benzene exposure in a sample of population residing in a district of Florence. *Sci Tot Environ* 2008;392:41-9. - 16. Savitz D, Feingold L. Association of childhood cancer with residential traffic density, *Scand J Work Environ Health* 1989;15:360–3. - 17. Feychting M, Svensson D, Ahlbom A. Exposure to motor vehicle exhaust and childhood cancer. Scand J Work Environ Health 1998;24:8-11. - 18. Weng HH, Tsai SS, Chen CC, et al. Childhood leukemia development and correlation with traffic air pollution in Taiwan using nitrogen dioxide as an air pollutant marker. *J Toxicol Environ Health A* 2008;71:434-8. - 19. Amigou A, Sermage-Faure C, Orsi L, et al. Road traffic and childhood leukemia: the ESCALE study (SFCE). *Environ Health Perspect* 2011;119:566–72. - 20. Langholz B, Ebi K, Thomas D, Peters J, London S. Traffic density and the risk of childhood leukemia in a Los Angeles case–control study. *Ann Epidemiol* 2002: 12: 482–7. - 21. Steffen C, Auclerc MF, Auvrignon A, et al. Acute childhood leukemia and environmental exposure to potential sources of benzene and other hydrocarbons: a case-control study. **Occup Environ Med 2004;61:773–8.** - 22. Reynolds P, Von Behren J, Gunier RB, et al. Residential exposure to traffic in California and childhood cancer. *Epidemiology* 2004;15: 6–12. - 23. Von Behren J, Reynolds P, Gunier RB, et al. Residential traffic density and childhood leukemia risk. *Cancer Epidemiol Biomarkers Prev* 2008;17:2298–301. - 24. Brosselin P, Rudant J, Orsi L, et al. Acute childhood leukemia and residence next to petrol stations and automotive repair garages: the ESCALE study (SFCE). *Occup Environ Med* 2009;66:598–606. - 25. Weng HH, Tsai SS, Chiu HF, et al. Childhood leukemia and traffic air pollution in Taiwan: petrol station density as an indicator. *J Toxicol Environ Health A* 2009;72:83-7. - 26. Crosignani P, Tittarelli A, Borgini A, Berrino F. Childhood leukemia and road traffic: a population-based case—control study. *Int J Cancer* 2004;108:596–9. - 27. Raaschou-Nielsen O, Hertel O, Thomsen BL, Olsen JH. Air pollution from traffic at the residence of children with cancer. *Am J Epidemiol* 2001;153:433–43. - 28. Urayama KY, Buffler PA, Gallagher ER, et al. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. *Int J Epidemiol* 2010;39:718-32. - 29. Von Behren J, Spector LG, Mueller BA, et al. Birth order and risk of childhood cancer: a pooled analysis from five U.S. studies. *Int J Cancer* 2011;128:2709-16. - Kim S, Vermeulen R, Waidyanatha S, et al. Modeling human metabolism of benzene following occupational and environmental exposures. *Cancer Epidemiol Biomarkers Prev* 2006;15:2246–52. - 31. Protano C, Guidotti M, Manini P, et al. Benzene exposure in childhood: role of living environments and assessment of available tools. *Environ Int* 2010;36:779–87. - 32. Negri S, Bono R, Maestri L, et al. High-pressure liquid chromatographic—mass spectrometric determination of sorbic acid in urine: verification of formation of *trans,trans*-muconic acid. *Chem Biol Interact* 2005;153-154:243-6. - 33. Lash Tl, Fox MF, Fink AK. Applying quantitative bias analysis to epidemiologic data. Springer Science + Business Media, LLC 2009. - 34. Wild CP. Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Table 1. Children included in the pilot study by selected characteristics | | | Cas | es | Cont | rols | |-----------------------------|---|-----|----|------|------| | | | N | % | N | % | | Gender |
Female | 25 | 58 | 30 | 54 | | Gender | Male | 18 | 42 | 26 | 46 | | | [2,4) years | 5 | 12 | 9 | 16 | | Age at the survey | [4,6) years | 21 | 49 | 16 | 29 | | | [6,12] years | 17 | 40 | 31 | 55 | | | Turin | 7 | 16 | 9 | 16 | | | Milan | 8 | 19 | 13 | 23 | | | Florence | 3 | 7 | 5 | 9 | | Residence* | Rome | 14 | 33 | 15 | 27 | | | Catania | 3 | 7 | 5 | 9 | | | Palermo | 4 | 9 | 6 | 11 | | | Cagliari | 4 | 9 | 3 | 5 | | | None | 20 | 47 | 27 | 48 | | 5 . I. § | One | 16 | 37 | 18 | 32 | | Parent smoking [§] | Both | 4 | 9 | 11 | 20 | | | Missing | 3 | 7 | 0 | - | | | No qualification | - | - | 1 | 2 | | Falls and a | Primary school | 17 | 40 | 21 | 38 | | Father's | High school | 17 | 40 | 24 | 43 | | education [§] | University degree | 6 | 14 | 10 | 18 | | | Missing | 3 | 7 | - | - | | | No qualification | - | - | - | _ | | N.A. a. I | Primary school | 19 | 44 | 17 | 30 | | Mother's | High school | 15 | 35 | 26 | 46 | | education [§] | University degree | 9 | 21 | 13 | 23 | | | Missing | - | - | - | - | | | Only child | 10 | 23 | 12 | 21 | | Birth order [§] | First born | 10 | 23 | 20 | 36 | | | Second born or higher birth order | 23 | 53 | 24 | 43 | | | No schooling yet | 15 | 35 | 16 | 29 | | Age at first | <3 years (crèche) | 14 | 33 | 9 | 16 | | schooling [§] | [3,6) years (preschool) | 14 | 33 | 30 | 54 | | - | [6-7] years (primary school) | 0 | _ | 1 | 2 | | | Occupied since birth | 28 | 65 | 39 | 70 | | Home at the time | Moved into after birth & before diagnosis | 13 | 30 | 12 | 21 | | of the benzene | Moved into after diagnosis & before interview | 1 | 2 | 5 | 9 | | survey | Moved into after interview | | 2 | | | | , | woved into after interview | 1 | | - | - | ^{*}At the time of diagnosis or the corresponding reference date for controls; [§]Information reported at the interview; [^]The ELF magnetic fields measurements, if the parents agreed, were made at the time of the interview. Table 2. Benzene concentration in personal and outdoor air samples, and urine level of cotinine and benzene metabolites by season and overall | | Obs (#) | Mean | SD | G-mean | G-SD | Min | | Percentiles | | 0.4 | |---|---------|--------|--------|--------|------|--------|-------|-------------|--------|---------| | Benzene in personal air samples (µg/m³) | Obs (#) | iviean | 30 | G-mean | G-3D | IVIIII | p25 | p50 | p75 | Max | | Spring | 57 | 2.51 | 1.89 | 2.10 | 1.75 | 0.60 | 1.50 | 1.82 | 3.11 | 11.12 | | Summer | 86 | 2.26 | 1.45 | 1.90 | 1.82 | 0.47 | 1.25 | 1.85 | 3.10 | 8.13 | | Autumn | 62 | 4.31 | 2.60 | 3.73 | 1.57 | 0.92 | 2.939 | 3.70 | 5.17 | 18.47 | | Winter | 56 | 4.04 | 1.78 | 3.67 | 1.73 | 1.55 | 2.34 | 4.00 | 5.24 | 9.03 | | Individual yearly averages | 99 | 3.00 | 1.45 | 2.66 | 1.67 | 0.75 | 2.05 | 2.90 | 3.83 | 9.00 | | Benzene in outdoor air samples (μg/m³) | | | | | | | • | | | | | Spring | 57 | 2.29 | 1.30 | 1.93 | 1.84 | 0.48 | 1.20 | 1.91 | 3.15 | 5.67 | | Summer | 86 | 1.94 | 1.20 | 1.65 | 1.75 | 0.39 | 1.12 | 1.58 | 2.28 | 6.92 | | Autumn | 62 | 3.99 | 2.58 | 3.05 | 1.92 | 0.08 | 1.93 | 3.42 | 5.63 | 11.18 | | Winter | 56 | 3.80 | 1.86 | 3.25 | 2.35 | 0.15 | 2.40 | 3.66 | 5.20 | 8.31 | | Individual yearly averages | 99 | 2.70 | 1.41 | 2.33 | 1.78 | 0.27 | 1.59 | 2.37 | 3.63 | 6.92 | | Cotinine (µg/ g creatinine) | | | | | | | • | | | | | Spring | 78 | 3.92 | 7.04 | 1.91 | 3.26 | 0.05 | 1.00 | 1.94 | 3.50 | 49.0 | | Summer | 78 | 3.20 | 5.52 | 1.50 | 3.59 | 0.09 | 0.82 | 1.68 | 3.71 | 41.4 | | Autumn | 76 | 4.54 | 8.51 | 1.92 | 3.92 | 0.05 | 1.20 | 1.93 | 4.30 | 48.7 | | Winter | 74 | 4.36 | 7.38 | 2.32 | 3.01 | 0.10 | 1.20 | 2.30 | 4.80 | 53.5 | | Individual yearly averages | 98 | 3.73 | 5.99 | 2.14 | 2.67 | 0.30 | 1.08 | 2.09 | 3.58 | 41.9 | | MA (μg/g creatinine) | | | | | | | | | | | | Spring | 81 | 104.22 | 69.28 | 87.43 | 1.79 | 17.00 | 60.27 | 82.00 | 126.99 | 349.00 | | Summer | 79 | 140.40 | 226.73 | 92.30 | 2.16 | 13.33 | 56.54 | 83.00 | 131.76 | 1680.00 | | Autumn | 76 | 128.24 | 124.04 | 99.57 | 1.94 | 30.21 | 60.16 | 102.48 | 147.21 | 893.04 | | Winter | 74 | 119.09 | 100.15 | 95.30 | 1.86 | 26.00 | 65.00 | 86.00 | 129.00 | 591.00 | | Individual yearly averages | 98 | 116.65 | 84.89 | 101.06 | 1.62 | 46.42 | 73.33 | 92.66 | 122.50 | 593.42 | | S-PMA (μg/g creatinine) | • | • | | | | | | | | | | Spring | 81 | 1.13 | 0.60 | 1.00 | 1.62 | 0.21 | 0.80 | 1.00 | 1.30 | 3.70 | | Summer | 79 | 1.12 | 0.54 | 1.02 | 1.54 | 0.41 | 0.72 | 1.00 | 1.39 | 3.30 | | Autumn | 76 | 1.53 | 0.93 | 1.33 | 1.67 | 0.49 | 0.97 | 1.29 | 1.84 | 5.80 | | Winter | 74 | 1.37 | 0.60 | 1.23 | 1.64 | 0.15 | 1.00 | 1.20 | 1.60 | 3.40 | | Individual yearly averages | 98 | 1.28 | 0.50 | 1.20 | 1.43 | 0.56 | 0.94 | 1.20 | 1.46 | 2.97 | Table 3. Personal exposure to benzene ($\ln \mu g/m^3$) by outdoor benzene concentration, cotinine, gender, age, season, province of residence, and caseness | A. Whole data-set (261 observation, 9 | 99 children) | | | |---------------------------------------|------------------|-------------|---------| | | β | 95% CI (β) | p(Z) | | Outdoor benzene(µg/m³) | 0.151 | 0.12; 0.19 | <0.001 | | Gender (male vs female) | -0.052 | -0.21; 0.11 | 0.522 | | Age (at the benzene survey) | Reference [6-12] |] years | | | [2-4) years | 0.027 | -0.20; 0.25 | 0.814 | | [4-6) years | -0.147 | -0.32; 0.03 | 0.098 | | Season | Reference Spring | g | | | Summer | -0.027 | -0.18; 0.12 | 0.717 | | Autumn | 0.317 | 0.16; 0.48 | < 0.001 | | Winter | 0.330 | 0.17; 0.49 | < 0.001 | | Residence | Reference = Turi | in | | | Milan | -0.038 | -0.28; 0.20 | 0.759 | | Florence - Rome | -0.208 | -0.45; 0.03 | 0.091 | | Catania - Palermo - Cagliari | -0.086 | -0.31; 0.13 | 0.443 | | Case vs control | -0.039 | -0.19; 0.12 | 0.623 | R^2 overall =0.4617 (within = 0.5364; between = 0.3603); Wald χ^2 =234.0; p<0.0001 # B. Restricted data-set (≥2 repeats; 175 observations, 61 children) | | β | SE (β) | p(Z) | | |---|----------------------------------|-----------------|--------|--| | Outdoor benzene(µg/m³) | 0.123 | 0.020 | <0.001 | | | Cotinine (µg/g creatinine) | 0.023 | 0.011 | 0.039 | | | Gender (male vs female) | -0.057 | 0.116 | 0.623 | | | Age (at the benzene survey) | Reference [6-12] years | | | | | [2-4) years | 0.050 | 0.161 | 0.757 | | | [4-6) years | -0.199 | 0.121 | 0.100 | | | Season | Reference = Spring | 3 | | | | Summer | -0.055 | 0.081 | 0.494 | | | Autumn | 0.382 | 0.087 | <0.001 | | | Winter | 0.351 | 0.086 | <0.001 | | | Residence | Reference = Turin | | | | | Milan | 0.038 | 0.155 | 0.807 | | | Florence - Rome | -0.323 | 0.195 | 0.099 | | | Catania - Palermo - Cagliari | -0.00001 | 0.138 | 1.000 | | | Case vs control | -0.073 | 0.107 | 0.498 | | | R ² overall =0.4858 (within = 0.5564; betw | veen = 0.3544); Wald χ^2 =1 | 71.89; p<0.0001 | | | Table 4. Urinary excretion of S-PMA (In μ g/g creatinine) by personal benzene exposure (model 1) or outdoor benzene concentration plus urinary cotinine (model 2), controlling for gender, age, season, province of residence, and caseness | Model 1 (310 observations, 98 children) | β | 95% CI (β) | p(Z) | |--|------------------------------------|--------------|---------| | Personal benzene exposure (μg/m³) | 0.031 | 0.004; 0.06 | 0.024 | | Gender (male vs female) | -0.027 | -0.16; 0.11 | 0.695 | | Age (at the benzene survey) | Reference | [6-12] years | | | [2-4) years | 0.395 | 0.22; 0.57 | < 0.001 | | [4-6) years | -0.011 | -0.16; 0.14 | 0.890 | | Season | Reference | Spring | | | Summer | 0.043 | -0.09; 0.17 | 0.514 | | Autumn | 0.250 | 0.11; 0.38 | <0.001 | | Winter | 0.156 | 0.01; 0.30 | 0.033 | | Residence | Reference T | Turin | | | Milan | 0.007 | -0.21; 0.23 | 0.949 | | Florence - Rome | 0.013 | -0.18; 0.21 | 0.898 | | Catania - Palermo - Cagliari | 0.068 | -0.14; 0.27 | 0.514 | | Case vs control | 0.053 | 0.647 | 0.415 | | R^2 overall =0.1894 (within = 0.1263; between = 0. | 2174); Wald χ^2 =58.9 | 7; p <0.0001 | | | | | | | | Model 2 (214 observations, 98 children) | β | 95% CI (β) | p(Z) | | Outdoor benzene concentration (µg/m³) | 0.009 | -0.02; 0.04 | 0.605 | | Cotinine (µg/g creatinine) | 0.014 | 0.001; 0.03 | 0.040 | | Gender (male vs female) | -0.012 | -0.16; 0.14 | 0.875 | | Age (at the benzene survey) | Reference | [6-12] years | | | [2-4) years | 0.308 | 0.08; 0.54 | 0.008 | | [4-6) years | 0.055 | -0.11; 0.22 | 0.516 | | Season | Reference | Spring | | | Summer | -0.040 | -0.18; 0.10 | 0.582 | | Autumn | 0.200 | 0.04; 0.36 | 0.012 | | Winter | 0.082 | -0.07; 0.24 | 0.305 | | Residence | Reference ' | Turin | | | Milan | -0.053 | -0.28; 0.18 | 0.657 | | Florence - Rome | 0.048 | -0.18; 0.28 | 0.687 | | Catania - Palermo - Cagliari | 0.003 | -0.21; 0.22 | 0.974 | | S S S S S S S S S S S S S S S S S S S | | | | | Case vs control | 0.011 | -0.14; 0.16 | 0.882 | Figure 1. Children eligible for inclusion and participation rates # Appendix 1 – Chemical determination: analytical conditions Benzene concentrations in air samples The main analytical conditions were the following: desorption at 320 °C for 10 min; overall split ratio 1:75; carrier gas nitrogen at 27 psi; column J&W PONA, 50 m, 0.2 mm id, 0.5 μ m film thickness; oven 35 °C for 1 min, 6 °C/min to 110 °C, 20 °C/min to 220 °C, 2 min. Urine analyses Pre-treatment and chromatographic conditions used for each analyte are described below. <u>S-PMA</u>. Pre-treatment of the urine sample (5 mL): calibration curve concentrations = 0, 5, 10, and 50 μg/L; acidification with HCl; centrifugation (10 minutes at 3500 rpm); purification on SPE (Isolute C18 500 mg/3 mL). Chromatographic conditions: Mobile Phase = 60% acetic acid 1% and 40% methanol; Flow = 0.3 mL/min; Column = Symmetry C18 3.0 x 150 mm, 3.5 μm (Waters); Column temperature = 29°C; Run time = 45 min; Volume injected = 21 μL; MS Method = Single Ion Recording of mass 238.0 in
ESI neg; LR = 0.3 μg/L. $\overline{\text{MA}}$. Pre-treatment of the urine sample (2 mL): calibration curve concentrations: 0, 50, 200, 500, 1000 μg/L; centrifugation (10 minutes at 3500 rpm); purification on SPE (Isolute SAX 500 mg/3mL). Chromatographic conditions: Mobile Phase = 78 % formic acid 0.2 % and 22 % methanol; Flow = 0.3 mL/min; Column= Symmetry C18 3.0 x 150 mm, 3.5 μm (Waters); Column temperature = 30°C; Run time = 30 min; Volume injected = 21 μL. MS Method: Single Ion Recording of mass 141.0 in ESI neg; LR = 7 μg/L. Cotinine. Pre-treatment of the urine sample (2 mL): calibration curve concentrations: 0, 10, 50, 250, 1000, 3000 μ g/L; basification with Ammonium Hydroxide ACS Reagent; centrifugation (10 minutes at 3500 rpm); purification on SPE (Isolute ENV + 50 mg/3mL). Chromatographic conditions: Mobile Phase = 75 % ammonium acetate 3.7mM and 25 % methanol; Flow = 0.3 mL/min; Column = Symmetry C18 3.0 x 150 mm, 3.5 μ m (Waters); Column temperature = 30°C; Run time = 33 min; Volume of sample injected = 21 μ L. MS Method: Single Ion Recording of mass 177.2 in ESI pos; LR = 0.3 μ g/L. Appendix Table A. Urinary cotinine levels (In $\mu g/g$ of creatinine) by smoking habits of the parents, gender, age, season, province of residence, and caseness (295 observations from 95 children) | β | 95% CI (β) | p(Z) | |----------------------|--|---| | Reference Nonsmok | ers | | | 0.852 | 0.50; 1.20 | <0.001 | | 1.685 | 1.22; 2.15 | <0.001 | | 0.028 | -0.31; 0.37 | 0.872 | | Reference [6-12] yea | ars | | | 0.214 | -0.22; 0.65 | 0.338 | | 0.111 | -0.27; 0.49 | 0.566 | | Reference Spring | | | | -0.193 | -0.43; 0.05 | 0.116 | | -0.015 | -0.26; 0.23 | 0.901 | | 0.260 | 0.02; 0.50 | 0.035 | | Reference Turin | | | | -0.348 | -0.90; 0.20 | 0.215 | | 0.636 | 0.14; 1.13 | 0.011 | | 0.511 | 0.002; 1.02 | 0.049 | | 0.229 | -0.09; 0.55 | 0.164 | | | Reference Nonsmok 0.852 1.685 0.028 Reference [6-12] yea 0.214 0.111 Reference Spring -0.193 -0.015 0.260 Reference Turin -0.348 0.636 0.511 | Reference Nonsmokers 0.852 0.50; 1.20 1.685 1.22; 2.15 0.028 -0.31; 0.37 Reference [6-12] years 0.214 -0.22; 0.65 0.111 -0.27; 0.49 Reference Spring -0.193 -0.43; 0.05 -0.015 -0.26; 0.23 0.260 0.02; 0.50 Reference Turin -0.348 -0.90; 0.20 0.636 0.14; 1.13 0.511 0.002; 1.02 | # Appendix Table B. Participation bias factors calculated using different cut-points to dicothomize outdoor benzene concentrations | Cut-point = P | 50 = 3.25 μg/m ³ | Exposed | Not Exposed | Bias factor | | |---------------|-----------------------------|---------|-------------|-------------|--| | Cases | Participant | 18 | 25 | | | | Cases | Non Participant | 11 | 12 | 1.03 | | | Controls | Participant | 28 | 28 | 1.05 | | | Controls | Non Participant | 44 | 36 | | | | Cut-point = P | $75 = 4.34 \mu g/m^3$ | Exposed | Not Exposed | Bias factor | | | Casas | Participant | 4 | 39 | | | | Cases | Non Participant | 7 | 16 | 0.64 | | | Controls | Participant | 14 | 42 | 0.64 | | | Controls | Non Participant | 26 | 54 | | | | Cut-point = 5 | μg/m ³ | Exposed | Not Exposed | Bias factor | | | Cases | Participant | 3 | 40 | 1.42 | | | | Non Participant | 4 | 19 | | | | Controls | Participant | 4 | 52 | 1.42 | | | Controls | Non Participant | 16 | 64 | | | | | | | | | | Appendix Table C. Relationship between estimated exposures to ELF-MF (48 h TWA in the child's bedroom, In μ T) and to outdoor benzene (individual averages of repeated seasonal measurements, μ g/m³), controlling for gender, age, province of residence, caseness, and participation in the benzene pilot study (125 observations; 48 cases and 77 controls) | β | 95% CI (β) | p (t) | |----------------|--|-------| | 0.177 | 0.06; 0.29 | 0.002 | | -0.332 | -0.74; 0.08 | 0.112 | | Reference [6-1 | .0] years | | | 0.120 | -0.56; 0.80 | 0.728 | | 0.166 | -0.38; 0.72 | 0.550 | | 0.334 | -0.29; 0.96 | 0.295 | | Reference Turi | in | | | -0.007 | -0.65; 0.64 | 0.984 | | 0.135 | -0.50; 0.76 | 0.673 | | 0.521 | -0.13; 1.17 | 0.116 | | -0.024 | -0.43; 0.38 | 0.908 | | 0.520 | 0.09; 0.95 | 0.019 | | | 0.177 -0.332 Reference [6-1 0.120 0.166 0.334 Reference Turi -0.007 0.135 0.521 -0.024 | 0.177 | STROBE Statement—Checklist of items that should be included in reports of *case-control studies* | | Item
No | Recommendation | |------------------------|------------|---| | Title and abstract | 1★ | (a) Indicate the study's design with a commonly used term in the title or the abstract | | | | (b) Provide in the abstract an informative and balanced summary of what was done | | | | and what was found | | Introduction | | | | Background/rationale | 2★ | Explain the scientific background and rationale for the investigation being reported | | Objectives | 3★ | State specific objectives, including any prespecified hypotheses | | Methods | | | | Study design | 4★ | Present key elements of study design early in the paper | | Setting | 5★ | Describe the setting, locations, and relevant dates, including periods of recruitment, | | 8 | | exposure, follow-up, and data collection | | Participants | 6 * | (a) Give the eligibility criteria, and the sources and methods of case ascertainment | | 1 | | and control selection. Give the rationale for the choice of cases and controls | | | | (b) For matched studies, give matching criteria and the number of controls per case | | Variables | 7★ | Clearly define all outcomes, exposures, predictors, potential confounders, and effect | | | | modifiers. Give diagnostic criteria, if applicable | | Data sources/ | 8*★ | For each variable of interest, give sources of data and details of methods of | | measurement | | assessment (measurement). Describe comparability of assessment methods if there | | | | is more than one group | | Bias | 9★ | Describe any efforts to address potential sources of bias | | Study size | 10★ | Explain how the study size was arrived at | | Quantitative variables | 11★ | Explain how quantitative variables were handled in the analyses. If applicable, | | | | describe which groupings were chosen and why | | Statistical methods | 12★ | (a) Describe all statistical methods, including those used to control for confounding | | | | (b) Describe any methods used to examine subgroups and interactions | | | | (c) Explain how missing data were addressed | | | | (d) If applicable, explain how matching of cases and controls was addressed | | | | (\underline{e}) Describe any sensitivity analyses | | Results | | | | Participants | 13*★ | (a) Report numbers of individuals at each stage of study—eg numbers potentially | | | | eligible, examined for eligibility, confirmed eligible, included in the study, | | | | completing follow-up, and analysed | | | | (b) Give reasons for non-participation at each stage | | | | (c) Consider use of a flow diagram | | Descriptive data | 14*★ | (a) Give characteristics of study participants (eg demographic, clinical, social) and | | | | information on exposures and potential confounders | | | | (b) Indicate number of participants with missing data for each variable of interest | | Outcome data | 15*★ | Report numbers in each exposure category, or summary measures of exposure | | Main results | 16★ | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and | | | | their precision (eg, 95% confidence interval). Make clear which confounders were | | | | adjusted for and why they were included | | | | (b) Report category boundaries when continuous variables were categorized | | | | (c) If relevant, consider translating estimates of relative risk into absolute risk for a | | | | meaningful time period | | Other analyses | 17★ | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses | |------------------|-----|--| | Discussion | | | | Key results | 18★ | Summarise key results with reference to study objectives | | Limitations | 19★ | Discuss limitations of the study, taking into account sources of potential bias or imprecision. | | | | Discuss both direction and magnitude of any potential bias | | Interpretation | 20★ | Give a cautious overall interpretation of results considering objectives, limitations, | | | | multiplicity of analyses, results from similar studies, and other relevant evidence | | Generalisability | 21★ | Discuss the generalisability (external validity) of the study results | | Other informati | on | | | Funding | 22★ | Give the source of funding and the role of the funders for the present study and, if applicable, | | | | for the original study on which the present article is based | ^{*}Give information separately for cases and controls. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org. # Exposure to benzene and childhood leukaemia: a pilot casecontrol study | Journal: | BMJ Open | |----------------------------------
--| | Manuscript ID: | bmjopen-2012-002275.R1 | | Article Type: | Research | | Date Submitted by the Author: | 31-Dec-2012 | | Complete List of Authors: | Lagorio, Susanna; National Institute of Health, National Centre for Epidemiology, Surveillance, and Health Promotion Ferrante, Daniela; University "Amedeo Avogadro" of Piemonte Orientale, Unit of Medical Statistics and Epidemiology Ranucci, Alessandra; University "Amedeo Avogadro" of Piemonte Orientale, Unit of Medical Statistics and Epidemiology Negri, Sara; Fondazione Salvatore Maugeri, Centro Ricerche Ambientali Sacco, Paolo; Fondazione Salvatore Maugeri, Centro Ricerche Ambientali Rondelli, Roberto; Italian Association of Paediatric Haematology and Oncology (AIEOP), Operation Office, Sant'Orsola Malpighi Hospital Cannizzaro, Santina; Italian Cancer League, Ragusa Section Torregrossa, Valeria; University of Palermo, Department of Sciences for Health Promotion Cocco, Pierluigi; University of Cagliari, Department of Public Health, Occupational Health Section Forastiere, Francesco; Lazio Regional Health Service, Department of Epidemiology Miligi, Lucia; ISPO Cancer Prevention and Research Institute, Occupational and Environmental Epidemiology Unit Bisanti, Luigi; Milan Local Health Agency, Epidemiology Unit Magnani, Corrado; University "Amedeo Avogadro" of Piemonte Orientale, Unit of Medical Statistics and Epidemiology | | Primary Subject Heading : | Epidemiology | | Secondary Subject Heading: | Oncology, Paediatrics, Public health | | Keywords: | Paediatric oncology < PAEDIATRICS, Exposure assessment, Benzene | | | | SCHOLARONE™ Manuscripts ## Exposure to benzene and childhood leukaemia: a pilot case-control study Susanna Lagorio¹, Daniela Ferrante², Alessandra Ranucci², Sara Negri³, Paolo Sacco³, Roberto Rondelli⁴, Santina Cannizzaro⁵, Maria Valeria Torregrossa⁶, Pierluigi Cocco⁷, Francesco Forastiere⁸, Lucia Miligi⁹, Luigi Bisanti¹⁰, Corrado Magnani² ### **Corresponding Author** Dr. Susanna Lagorio (MD, Senior Scientist) National Centre of Epidemiology, Surveillance and Health Promotion Viale Regina Elena, 299 - 00161 Rome (Italy) Tel. +390649904304; Fax +390649904305 e-mail susanna.lagorio@iss.it Keywords: acute lymphoblastic leukaemia, benzene, extremely low frequency magnetic fields (ELF-MF), biomarkers, children, participation bias, confounding, epidemiologic methods. Word count: 4608 ¹National Centre of Epidemiology, National Institute of Health, Rome, Italy ²Unit of Medical Statistics and Epidemiology, CPO Piemonte and University "Amedeo Avogadro" of Piemonte Orientale; Alessandria, Novara and Vercelli, Italy ³Fondazione Salvatore Maugeri, Centro Ricerche Ambientali; Padova and Pavia, Italy ⁴Italian Association of Paediatric Haematology and Oncology (AIEOP), Operation Office, Sant'Orsola Malpighi Hospital; Bologna, Italy ⁵Italian Cancer League, Ragusa Section; Ragusa Ibla, Italy ⁶Department of Sciences for Health Promotion, University of Palermo; Palermo, Italy ⁷Department of Public Health, Occupational Health Section, University of Cagliari; Cagliari, Italy ⁸Department of Epidemiology, Lazio Regional Health Service; Rome, Italy Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute; Florence, Italy ¹⁰Epidemiology Unit, Milan Local Health Agency; Milan, Italy #### **ABSTRACT** ### **Objectives** *Main purpose*: to assess the feasibility of a measurement-based assessment of personal benzene exposure in case-control studies of paediatric cancer. Additional aims: to identify the main sources of variability in personal exposure; to evaluate the performance of two benzene biomarkers; to verify the occurrence of participation bias; to check whether exposures to benzene and to 50 Hz magnetic fields were correlated, and might exert reciprocal confounding effects. ### Design Pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine. ### **Participants** Full-participation was obtained from 46 cases and 60 controls, with low dropout rates before 4 repeats (11% and 17%); additional 23 cases and 80 controls allowed collection of outdoor air samples only. #### Results The average benzene concentration in personal and outdoor air samples was 3 $\mu g/m^3$ (SD 1.45) and 2.7 $\mu g/m^3$ (SD 1.41), respectively. Personal exposure was strongly influenced by outdoor benzene concentrations, higher in the cold seasons than in warm seasons, and not affected by gender, age, area of residence, or caseness. Urinary excretion of S-PMA and personal benzene exposure were well correlated. Outdoor benzene levels were lower among participant controls compared to non-participants, but did not differ between participant and non-participant cases; the direction of the bias was found to depend on the cut-point chosen to distinguish exposed and unexposed. Exposures to benzene and ELF-MF were positively correlated. ## Conclusions Repeated individual measurements are needed to account for the seasonal variability in benzene exposure, and have the additional advantage of increasing the study power. Measurement-based assessment of benzene exposure in studies of paediatric cancer, although financially and logistically demanding, appear feasible and acceptable to children and their parents. #### Article focus - Benzene is an established causative factor for acute non lymphocytic leukaemia (AnLL), and there is limited evidence for an association between exposure to this agent and other hematologic neoplasms including acute lymphocytic leukaemia and myelodysplastic syndrome. Exposure to benzene would increase the risk of AnLL at levels of lifetime environmental exposure ≥120 ppb. While it seems unlikely that benzene is a major cause of leukaemia in the general population, children may represent a subpopulation with increased susceptibility. Available studies of benzene and childhood leukemia have provided inconsistent results, possibly due to the use of surrogate exposure proxies, and lack of analyses by leukaemia subtype. To get further insights on this topic, epidemiological studies based on objective estimates of environmental exposure to benzene have been recommended. - Our pilot study was aimed at evaluating the logistic feasibility of an assessment of personal benzene exposure based on repeated individual measurements within a case-control study of childhood leukemia. Additional aims were: (i) to estimate the level of benzene exposure in children and assess if, and how much, exposure variability was affected by a number of putative determinants; (ii) to evaluate the performance of urinary levels of *t-t*-muconic acid (MA) and sulpho-phenylmercapturic acid (S-PMA) as benzene biomarkers in children; (iii) to assess the presence of participation bias (which occurs when adhesion to the study protocol is associated with both the level of exposure and the presence / absence of the disease); (iv) to determine whether exposures to benzene and to 50 Hz magnetic fields (ELF-MF) were correlated, so that they could exert reciprocal confounding effects in the analyses of their relationship with childhood leukemia. ## **Key messages** - Eligibility for inclusion was restricted to 108 cases and 194 matched controls, aged 2 to 12 years at the time of the survey. Full participation rates were low (cases 43%, controls 31%), but additional 21% of cases and 41% of controls accepted the outdoor monitoring. Adherence of full participants to the scheduled four seasonal repeats was very satisfactory (cases 89%, controls 83%). - Personal exposure was strongly influenced by outdoor benzene concentrations, was higher in the cold seasons than in warm seasons, and was not affected by gender, age, area of residence, or caseness. Personal benzene exposure and urinary excretion of S-PMA (but not of MA) were well correlated. Outdoor benzene levels were lower among participant controls compared to non-participants, but did not differ between participant and non-participant cases (a participation bias was indeed present). A positive association between exposures to benzene and ELF-MF was observed. Epidemiologic studies of paediatric cancer and estimates of environmental benzene exposure based on repeated seasonal measurements, although challenging, appear logistically feasible and acceptable to children and their parents. ## Strengths and limitations - To our knowledge, this is the first pilot study of childhood leukaemia and measured personal benzene exposure. Its also has the merit of having addressed a
number of methodological problems besides logistic feasibility issues. - Due to logistic reasons and resource constraints, the study size was very small. It must also be stressed that the expected greater accuracy of measurement-based exposures estimates, compared to surrogate exposure proxies, does not necessarily correspond to increased construct validity; this is especially true when measurements are used for retrospective postdiagnosis exposure assessments. #### INTRODUCTION Benzene exposure and acute non lymphocytic leukaemia (AnLL) are causally related in adult humans, while there is limited evidence for an association between exposure to this agent and acute or chronic lymphocytic leukaemia, multiple myeloma, and non-Hodgkin's lymphoma.[3] Moreover, a dose-dependent association between benzene exposure and incidence of myelodysplastic syndrome has been observed among petroleum workers. [4] Benzene is a ubiquitous air pollutant, that needs to be metabolized to become carcinogenic.[1-2] cumulative exposure, equivalent to a lifetime (76 years) environmental exposure of \geq 120 ppb.[5] Due to the established carcinogenicity of benzene, WHO has not developed any guideline value for this chemical in air, while indicating that ambient benzene concentrations of 17, 1.7 and 0.17 $\mu g/m^3$ are associated with excess lifetime risks of leukaemia of 10^{-4} , 10^{-5} and 10^{-6} , respectively.[6-7] While it seems unlikely that benzene is a major cause of leukaemia in the general population exposed in the ppb range, children may represent a subpopulation with increased susceptibility.[1, 3] Childhood leukaemias have distinctive features compared to leukaemias in adults. The major subtypes are acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML), accounting for 80% and 15% of cases aged 0 to 14 years in white populations respectively.[8] Both subtypes are thought to develop through a first initiating event *in utero* (e.g. the TEL-AML1 gene fusion whose prevalence in newborns has been estimated at around 1% while it is observed in 25% of ALL cases) followed by further postnatal genetic changes.[8] The "second hit" might consist of additional idiopathic chromosomal translocations, as well as of exposures to biological, chemical or physical agents.[9] Ionizing radiation, benzene, alkylators and topoisomerase II inhibitors are among the few confirmed environmental risk factors for AML, while delayed, dysregulated responses to common infections are likely to play a major role in the conversion of pre-leukemic clones into overt ALL.[8-9] Findings from available studies of benzene and childhood leukaemia are inconsistent, possibly due to the use of indirect estimates of exposure and lack of analyses by leukaemia subtype.[10] To advance current understanding of benzene health effects and susceptibility, studies of paediatric cancers that include estimates of environmental exposure to benzene, rather than surrogate exposure indicators, have been recommended.[11] Major challenges in pursuing this suggestion include the space- and time-variability of ambient benzene levels, the low exposure levels in children, and the inherent susceptibility of case-control studies (the design of choice for etiological studies of rare disease like childhood cancer) to selection and information bias. We evaluated the logistic feasibility of an assessment of benzene exposure based on repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine, in a pilot investigation within an Italian case-control study on environmental risk factors for childhood leukaemia (SETIL). Additional objectives of the pilot study were: - to investigate the relationship between level personal exposure to benzene and putative determinants (atmospheric benzene, second-hand tobacco smoke, individual traits); - to assess the performance of *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) as benzene biomarkers in children; - to verify the occurrence of participation bias from differential adhesion to the benzene measurement study, and estimate the amount and direction of the distortion; - to check whether exposures to benzene and to extremely low frequency magnetic fields (ELF-MF) were correlated, and might eventually exert reciprocal confounding effects on the relationship with childhood leukaemia. #### **METHODS** ## **Study population** Incident cases of childhood leukaemia from 14 Italian regions, aged 0 to 10 years at diagnosis in 1998-2001, were eligible for enrolment in the SETIL study. Cases were ascertained through the national registry run by the Association of Paediatric Haematology and Oncology (AIEOP). Controls, matched to cases (2:1 ratio) on gender, date of birth, and region, were randomly selected from population lists. Information on several items concerning the children, their next-of-kin and dwellings, was collected by interview of parents. All interviewed families were invited to participate in a measurement study of indoor ELF-MF, while subsets of participants were asked to join two side-investigations, on exposure to gamma radiation and benzene, respectively. Eligibility for the benzene pilot study was restricted to 108 childhood leukaemia cases from seven Italian provinces (Turin, Milan, Florence, Rome, Catania, Palermo, and Cagliari), diagnosed between July 2000 and December 2001, and 194 matched controls. The study protocol was approved by the Piedmont Ethical Committee on 14 January 2002. ## Sampling strategy and devices Due to the high daily and seasonal variability of atmospheric benzene concentrations, the protocol called for four repeated seasonal one-week samplings of breathing zone air per child over one year ("personal" air samples), with concurrent collection of urine samples and atmospheric air samples in proximity of the children's homes ("outdoor" air samples). Outdoor air sampling would also be performed, with an identical strategy, near the homes of all eligible non-participants. To study the day-to-day variability in exposure, 24-h repeated personal and indoor samples during four season-specific weeks would be collected from a subset of children and related homes. Personal air samples were collected by passive samplers (Radiello® radial symmetry diffusive sampler) worn by the child during the day and placed at the bedside at night. Radiello® samplers were also used to collect outdoor air samples, placed near the entrance of the dwellings (within 1 meter), at a vertical distance from the ground suitable to avoid infringements (2-2.5 m), stored in a plastic case to avoid rain or snow. At retrieval, the adsorbing cartridges were removed from the diffusive bodies and placed into glass storage tubes. The ID code of the child, along with dates and times of sampling start and end, were recorded on self-adhesive labels stuck on the tubes. The cartridges were sent to a single laboratory (Fondazione Salvatore Maugeri, Padova) for the chemical analyses. Daily urine samples (10 ml, from the last micturition before sleep) were collected for 7 subsequent days (70 ml per week) during each seasonal survey. The daily samples were pooled in one plastic vial, and kept in the freezer compartment of the home refrigerator until collection at the end of the week. The vials were transported to the local research centre in cool bags, and stored at –5 °C until delivery (packed in dry ice and usually in 2 weeks) to the laboratory (Fondazione Salvatore Maugeri, Pavia). Field work began between March 2002 and January 2003, and ended in October 2003 - July 2004, depending on the local research centre. #### **Chemical determinations** Benzene concentrations in air sample were determined by an automated thermal desorber (ATD400, Perkin Elmer) coupled to a capillary gas-chromatography system (Autosystem XL, Perkin Elmer). The expanded uncertainty of the method, in the range 2.4 to 14.3 μ g/m³, was shown to be 18%.[12] The limits of detection and quantification, over 1 week exposure, are 0.05 μ g/m³ and 0.1 μ g/m³. The urine analyses were performed using a high pressure liquid chromatography system (Alliance 2690, Waters) equipped with a spectrometric (SM) detector (ZQ, Waters) following a preliminary step of purification of the samples on pre-activated solid phase extraction (SPE) cartridges. The limit of detection (LOD), coefficient of variation (CV) and accuracy of the method were: LOD = 1 μ g/L, CV % = (1.22)-(1.10), accuracy % = (- 2.39)-(3.36) for S-PMA; LOD = 20 μ g/L, CV % = (1.33)-(1.06), accuracy % = (- 2.18)-(3.27) for MA; LOD = 1 μ g/L, CV % = (1.25)-(1.09), accuracy % = (- 2.29)-(3.33) for cotinine. Further details are provided in Appendix 1. The chemical determinations were completed by May 2005. ## Statistical analyses Measurements below the chemical-specific detection limits were assigned half such values and included in the analyses. The relationships between personal exposure to benzene and putative determinants (as well as between urinary excretion of benzene metabolites, benzene intake, and other covariates) were assessed by generalized least squares (GLS) models for repeated measurements (STATA v. 11, xtreg procedure). The GLS model is: $y_{it} = \alpha + X_{it}B + u_{it} + e_{it}$, where i (1 to n) is the number of observations collected at time t (1 to 4) and u_{it} and e_{it} are the error components. As concentrations of benzene and urinary analytes were log-normally distributed, we always included in the models log-transformed dependent variables. We used the odds ratio (OR), calculated from generalized estimating equations (GEE) for repeated individual measurements (STATA v. 11, procedure xtgee), to estimate the association between benzene exposure and dichotomous variables such as case-control or
participation status. The general equation of the GEE model is $g\{E(y_j)\}=x_j\beta$, where g is the link function, herein a logit function. We calculated a participation bias factor following the method suggested by Greenland [bias factor = $(S_{1a}*S_{0b})/(S_{0a}*S_{1b})$], where S_{1a} , S_{0a} , S_{1b} , and S_{0b} denote the probabilities of selection (i.e. full participation in the benzene study) for exposed cases, unexposed cases, exposed controls, and unexposed controls.[13] When the bias factor equals 1, there is no bias, when it is above or below 1 the true OR will be biased respectively upward or downward by the magnitude of this factor. Multiple regression models were used to analyze the relation between estimated exposures to benzene and ELF-MF. ### **RESULTS** ## Participation and sampling outcome Out of 108 cases and 194 controls eligible for inclusion, 46 cases and 60 controls (43% and 31%) agreed to take full part in the benzene side-study (Figure 1). In addition, the parents of 23 cases and 80 controls who refused the personal exposure assessment accepted the outdoor monitoring (partial participation = 21% and 41%). Altogether 1467 air samples were collected. A small percentage (2%) were lost during monitoring (22 samplers stolen, 2 sampler plates broken, 3 cartridges lost), transport (8 missing labels) or chemical analysis (2 cartridges broken on arrival at the laboratory; 1 sample lost due to equipment failure). Benzene measurements from the day-to-day variability sub-study (19% of the total) could not be used because only four control children accepted the 24-h sampling scheme, and were replaced by the calculated weekly averages. A further 20% of benzene measurements was removed from the data-set due to lack of compliance with the study protocol (indoor samples collected in place of the personal ones from children refusing to wear the sampler; time-or place-mismatch of personal and outdoor samples; "orphan" personal or outdoor samples; duplicate season-specific measurements; non-participants replaced with children ineligible for the benzene side-study]. For the same reasons, 107 out of 417 chemical determinations in urine (26%) were discarded. Three cases and 5 controls were excluded from one or more analyses due to lack of complete measurement sets in all seasonal series and, although 89% and 83% of full-participant cases and controls did adhere to all four seasonal surveys, only 37% and 43% of them had four repeated analyzable observations. ### Personal characteristics of the children The families of cases participating in full to the benzene study had been interviewed on average 1.3 years (SD 0.47) after the date of diagnosis, and the control-families 1.5 years (SD 0.46) after the corresponding reference date. The delay between diagnosis and the first series of benzene measurements was 2 years (SD 0.53) for both cases and controls. Cases and controls were comparable in terms of gender, age, and father's attained educational level (Table 1). A higher proportion of controls than cases had both parents smoking, and control-mothers were more educated than case-mothers. There were similar proportions of only children in the case and control groups, while firstborn children were more frequent among controls than cases. Early schooling (day-care attendance) was more common in cases than in controls. At the time of the benzene survey, most children were still living in the home occupied at birth or in the house they moved into after birth but before the date of diagnosis (cases 95%; controls 91%). ### Level, variability, and determinants of personal exposure to benzene The analyses of level, variability and determinants of personal exposure to benzene were based on 43 cases (39 ALL and 4 AML) and 56 controls, with 261 valid pairs of benzene concentrations in breathing zone and outdoor air (110 from cases and 151 from controls). A large proportion of these children (35%) had a single pair of concurrent measurements, unevenly distributed by season, with a disproportionally high number of summer samples (30 out of 35, all but one from a single centre). The distributions, overall and by season, of benzene concentrations in personal and outdoor air samples, and of cotinine, MA and S-PMA in urine are described in Table 2. Personal exposure to benzene was log-normally distributed (Shapiro-Wilk test = 0.938, p<0.001), and the mean benzene level over the individual yearly averages was 3 μ g/m³ (0.92 ppb). The distribution of benzene outdoor concentration was skewed to the left in all seasons and the yearly averages were log-normally distributed as well (Shapiro-Wilk test = 0.948, p = 0.001); the average yearly benzene level near the children's homes was $2.7 \,\mu\text{g/m}^3$ (0.83 ppb). Both outdoor benzene concentrations and personal exposure levels were higher in the cold seasons (autumn-winter) than in the warm ones (spring-summer). The European limit for benzene in air (5 μ g/m³) was exceeded by 5% of the yearly average outdoor concentrations, and by 8% of the yearly average levels in breathing zone air samples. A large proportion of autumn and winter measurements were above 5 $\mu g/m^3$ (35% and 25% outdoor; 26% and 30% of the personal exposure estimates). Cases and controls had similar levels of personal exposure to benzene: the leukaemia OR for a unit increase (1 μ g/m³) in personal benzene exposure was 0.93 (95% CI 0.77-1.13) adjusting for gender, age at the benzene survey (2-4; 4-6; 6-12 years), cotinine in urine (μ g/g creatinine), season, and province of residence (Turin; Milan; Florence - Rome; Catania - Palermo - Cagliari). A similar lack of association was found between the odd of disease and benzene concentration outside the children's homes [OR 0.94 (95% CI 0.80-1.09)], controlling for gender, age, smoking habits of the parents at the interview (non-smokers, mother or father smoking; both parents smoking), season, and province of residence. Further adjustment for birth order and age at first schooling had no material effect on the observed leukaemia-benzene relationship [personal exposure: OR 0.92 (95% CI 0.75-1.13); outdoor benzene: OR 0.95 (95% CI 0.81-1.13)]. As cases and controls had comparable levels of benzene exposure, we carried out the analyses illustrated in the forthcoming paragraphs on the whole data-set, although always controlling for caseness. Urinary cotinine concentration (µg/g of creatinine) was higher in children of smoking parents compared to children of non-smokers, and children with both parents smoking excreted a larger amount of cotinine than children with one parent smoking (Appendix Table A). Cotinine levels were higher in winter than in other seasons, and higher in children from central and southern Italy (Florence, Rome, Palermo, Catania, Cagliari) than in children from northern provinces (Turin and Milan). The high between- *vs* within-subject R² ratio is worth noting. Personal benzene exposure was strongly influenced by outdoor benzene concentrations (Table 3-A), and apparently not affected by gender or age; the season showed a modifying effect, with increasing levels of personal exposure during autumn and winter; the fraction of variability explained by the model was higher for the within-subject component than for the between-subject one. Exposure to second-hand tobacco smoke (estimated by cotinine excretion or by parental smoking habits) showed a trivial influence on personal exposure to benzene. The inclusion of urinary cotinine (µg/g creatinine) in the model described in Table 3-A, slightly decreased its goodness of fit [R^2 overall = 0.46; Wald χ^2 =189.49; R^2 within = 0.55; R^2 between = 0.35; β (cotinine) = 0.012; 95% CI = -0.003; 0.03)]; an alternative model, including smoking habits of the parents, did not perform any better [R^2 overall = 0.46; Wald χ^2 =216.44; R^2 within = 0.52; R^2 between = 0.39; β (one parent smoking) = 0.14; 95% CI = -0.02; 0.31; β (both parents smoking) = 0.17; 95% CI = -0.06; 0.39]. Children from central Italy (Florence and Rome) tended to have lower benzene concentrations in breathing zone air samples compared to residents in other provinces, all other things being equal (Table 3-A), possibly because of residual confounding from lack of samples collected in Rome other than in summer. We tried to verify this hypothesis by restricting the analyses to children with at least two series of measurements in different seasonal periods (cold and warm). The dataset reduced to 61 subjects (25 cases and 36 controls) and 220 pairs of personal-outdoor benzene measurements. Actually, children from Florence still showed (not significantly) lower levels of personal exposure to benzene (β = - 0.27; 95% CI = -0.56; 0.03; p =0.074) compared to children from Turin. In the restricted data-set, however, independent effects of both outdoor benzene and urinary cotinine levels on personal benzene exposure were observed (Table 3-B). ### Benzene intake and urinary excretion of benzene metabolites Ninety-eight children (43 cases and 55 controls) and 310 pairs of urine and breathing zone air measurements (138 from cases and 172 from controls) were available for the analyses of the urinary excretion of benzene metabolites (MA and S-PMA) in relation to personal exposure to benzene. Urinary concentrations of S-PMA (In μ g/g creatinine) were related to personal exposure to benzene (Table 4, Model 1). Youngest children (2-4 years at the benzene survey) excreted higher level of S-PMA compared to children aged 6-12 years, all other conditions being equal, and urinary concentration of S-PMA were higher in samples collected during the cold seasons compared to spring samples. The model, however, explained just 19% of the overall S-PMA variability. In an alternative model, including outdoor benzene concentrations and urinary cotinine in place of personal benzene exposure, we
also observed an effect of the nicotine biomarker on S-PMA excretion (Table 4, Model 2). On the contrary, neither benzene concentrations in breathing zone air samples, nor outdoor benzene concentrations or cotinine levels explained the intra- and inter-individual variability in urinary levels of MA, controlling for gender, age, season, area of residence, and caseness (data not shown). ### Bias due to differential participation Available for the analysis of participation bias were 66 cases (43 full-participant and 23 partial-participant) and 136 controls (56 and 80), with 652 measurements of outdoor benzene concentrations (135 and 175 from full-participant cases and controls; 81 and 261 from partial-participant cases and controls). Benzene concentrations near the homes of full-participant controls were significantly lower than those in proximity of partial-participants' dwellings (OR = 0.88; 95% CI 0.80-0.97), adjusting for gender, age, season and place of residence, while there was no difference in ambient benzene levels between participant and non-participant cases (OR = 0.95; 95% CI 0.82-1.09). As participation in the study was also associated with the case-control status, assuming a causal association between exposure and disease, a selection bias might ensue. However, as parents of more exposed controls were less willing to accept to be interviewed, an upward distortion would be expected, which is at odds with the apparent lack of association between personal benzene exposure and leukaemia risk in the current study. To the aim of the current analysis, personal exposure to benzene was dichotomized around the median (3.25 μ g/m³), the 75th percentile (4.34 μ g/m³) or 5 μ g/m³ (the current limit for airborne benzene in Europe). The amount and direction of bias were found to depend on the cut-point chosen (Appendix Table B), whereas no bias is expected when the exposure is categorized around the median (bias factor = 1.03), and biases in the opposite directions are predicted using cut-off at p75 and at 5 μ g/m³ (0.64 and 1.42, respectively). #### Relationship between exposures to benzene and ELF-MF Children with benzene and ELF-MF measurements made at the same house qualified for inclusion in the analysis of the relationship between estimated exposures to these agents. As only 35 cases and 46 controls met such criterion when benzene concentrations in breathing zone air samples were used as exposure indicator, we performed the analysis on 48 cases and 77 controls with place-comparable pairs of average yearly outdoor benzene concentration ($\mu g/m^3$) and 48 h TWAs of ELF-MF level in the child's bedroom ($\ln \mu T$). There was a positive association between estimated exposures to ELF-MF (dependent variable) and benzene (β = 0.177; 95% CI 0.06-0.29; p = 0.002); the multivariable regression model (including gender, age, province of residence, caseness, and participation in the benzene pilot study as covariates) explained 16% of the variability in the dependent variable [F (10, 114 df) = 2.13; p> F = 0.0271]. A steeper increase in ELF-MF level per unit increase in outdoor benzene concentration (β = 0.520; 95% CI 0.09-0.95; p = 0.019) was seen among the 81 children fully participating in the benzene pilot-study compared to the 44 partial-participants (Appendix Table C). Similar results, with a more accentuated increase in indoor magnetic induction level per unit increase in outdoor benzene concentration [β = 0.272; 95% CI = 0.09-0.45; p(t) = 0.003; R² = 0.19], were observed in the restricted data-set of 86 children with \geq 2 weekly samplings in alternate seasons. #### **DISCUSSION** We have carried out a pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated individual measurements made on average two years after diagnosis. The pilot study included side-investigations aimed at evaluating the performance of two biological indicators of benzene exposure in children, at estimating amount and direction of a possible participation bias, and at assessing the relation between estimated exposures to benzene and ELF magnetic fields. Due to the relatively low incidence of childhood cancers (10-15 for 100,000 person-years in the 0-14 year range in most industrialized countries), the case-control approach is the design of choice for analytical epidemiologic studies about potential risk factors for these diseases. Such a study design, however, is inherently prone to measurement errors stemming from the retrospective reconstruction of the exposures of interest, and to differential participation leading to control samples not representative of the study base. Therefore, findings from observational epidemiologic studies of postulated determinants for childhood malignancies are often inconsistent and always require a cautious and thoughtful interpretation.[14] Although based on small numbers, some of the findings from the current study have a certain factual and methodological interest. Repeated samplings of breathing and outdoor air are indeed needed to account for the seasonal variability in environmental benzene levels.[15-16] On average, children participating in the current study appear to experience mean yearly levels of personal exposure to benzene not exceeding the European guidelines (although 8% percent of the yearly mean levels were above 5 μ g/m³). What we *a priori* considered the main sources of benzene exposure for children (ambient benzene levels and second-hand tobacco smoke) explained no more than half of the overall variability in personal exposure, which indicates the need to identify other sources of exposure particularly relevant, perhaps, during the cold seasons. In fact, in autumn-winter compared to spring-summer, we observed higher levels of personal exposure to benzene, of urinary cotinine and of S-PMA excretion, all other things being equal. These findings might be due to the lower ventilation rates in homes and schools during the cold seasons, to winter-specific sources of indoor benzene concentrations not considered in the current survey (e.g. fireplaces or other combustion sources), and/or to the seasonal variability in daily patterns of time spent in different micro-environments (e.g. within cars or buses).[17] Some case-control studies have suggested an association between exposure to traffic density and childhood leukaemia;[18-21] however, negative findings have also been reported.[22-25] Positive associations between incidence of ALL in children and residential proximity to petrol stations were observed in three case—control studies.[23, 26-27] An increased risk of childhood leukaemia in relation to estimated exposure to benzene was observed in a small Italian study,[28] but not in a much larger case-control study carried out in Denmark and based on a sophisticated and validated exposure modelling.[29] To our knowledge there is no previous study of childhood leukaemia and measured personal benzene exposure. Moreover, as only children aged 0 to 10 years at diagnosis were eligible for the SETIL study, the large majority of cases included in the current investigation were pre-B ALL. Cases and controls did not differ in terms of exposure to benzene, estimated either by benzene level in personal air samples or through outdoor benzene concentration, but the interpretation of this finding is hampered by the retrospective exposure assessment and the low statistical power of this preliminary investigation. That notwithstanding, due to the design based on repeated individual observations, the risk estimates have quite narrow confidence intervals. Thus the findings from this pilot study, in accordance with the limited evidence for an association between exposure to benzene and ALL,[3, 5] might also suggest that the levels of benzene exposure experienced by children living in Italian towns do not entail a detectable increase in the risk of ALL. Current perspectives on the causes of childhood ALL increasingly point towards an etiologic role of altered patterns of infections and related immune stimulation during the first years of life, and one piece of supporting evidence is the consistent observation of an inverse association between ALL risk and day-care attendance. [30] Studies of childhood ALL and birth order, on the other hand, have provided inconsistent result. [31] Neither age at first schooling, nor birth order confounded the relation between childhood leukaemia and indicators of benzene exposure in the current study. S-PMA concentration measured in repeated weekly samples of the last micturition before sleep was found to reflect personal exposure to benzene, although the available covariates explained a small fraction of the within- and between-subject variability of this benzene metabolite. This is a quite surprising result, considering that S-PMA is believed to represent less than 1% of urinary benzene metabolites for exposures to benzene at air concentrations between 0.1 and 10 ppm.[32] Benzene exposure proved not able to explain the variability of MA urinary excretion observed in our children, consistent with findings from a previous Italian study.[33] The low statistical power of the study, the low level of benzene exposure, and the lack of adjustment for the confounding effect of dietary intake of sorbic acid (a common food additive), may explain this finding.[34] Full-participation rates were higher among cases than controls. Notwithstanding the fairly satisfactory proportions of children with measured outdoor benzene concentrations (61% and 70% of eligible cases and controls), the degree of partial-participation was lower among non-participant cases (21%) than among non-participant controls (41%). We observed a differential participation bias, which underscores the need to plan parallel bias analyses in any case-control study.[35] The dependence of the participation bias factor on the cutpoint chosen to
dichotomize the exposure variable is of methodological interest. The positive association between the 48 h TWA of ELF-MF induction in the child's bedroom and the average yearly concentrations of outdoor benzene will need consideration in the interpretation of findings from the analyses of childhood leukaemia risk in relation to 50 Hz MF in the SETIL case-control study. Incidental failures during sample collection, transport or chemical analysis accounted for a negligible proportion of lost air or urine samples. However, substantial percentages of chemical measurements could not be included in current analyses because of misunderstanding of the sampling protocol. The day-to-day variability sub-study was clearly too demanding to be acceptable. In conclusion, the current pilot study suggests that epidemiologic studies of childhood leukaemia risk and measurement-based estimates of exposure to benzene are challenging but logistically feasible (provided that the study protocol specifies every single sampling detail and nothing is considered so obvious as to be omitted). Such an exposure assessment method could be considered by epidemiologists willing to involve in the "genome - exposome" approach to gain further insight into the relationship between benzene exposure and childhood leukaemia risk, with priority given to AML.[2, 36-38] #### **ACKNOWLEDGEMENTS** The authors acknowledge the relevant contributions provided by Dr. Vincenzo Cocheo, Dr. Sergio Ghittori and Dr. Luciano Maestri (Fondazione Salvatore Maugeri) whose untimely death prevented their seeing the results of this study. The authors thank Prof. Lorenzo Gafà for his strong support to the carrying out of the research in Sicily, Caterina Boaretto (Fondazione Salvatore Maugeri) for her skilful collaboration in the analysis and quality control of the air samples, along with Patrizia Legittimo, Anna Maria Badiali, Cristina Fondelli, Alessandra Benvenuti (Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence); Paolo Guidotti (ITI, Florence); Giuliana Buscema (Italian Cancer League, Ragusa Section), Simona Trapani, Rosalia Maria Valenti (University of Palermo), Vanda Macerata (CPO Piemonte) for data collection, recording, and quality control, along with Dr. Susan Richman for the language revision. ## **FUNDING** The current investigation was co-funded by the Italian Ministry of Health (passive samplers and chemical determinations), the Italian Association for Research on Cancer along with the Ministry of University and Research (personnel, travel, consumables, and computing), and the Piedmont Region "Ricerca Sanitaria Finalizzata" (statistical analyses). #### **COMPETING INTERESTS** None. #### **REFERENCES** - Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for benzene. Atlanta, GA U.S. Department of Health and Human Services, Public Health Service 1997. - 2. Smith MT, Zhang L, McHale CM, et al. Benzene, the exposome and future investigations of leukemia etiology. *Chem Biol Interact* 2011;192:155–59. - 3. International Agency for Research on Cancer (IARC). A review of human carcinogens. F. Chemical agents and related occupations. Lyon (France): IARC Press, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 100, 2012. - 4. Schnatter AR, Glass DC, Tang G, Irons RD, Rushton L. Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. *J Natl Cancer Inst* 2012;104:1724-1737. - 5. Environmental Protection Agency (EPA). Carcinogenic effects of benzene: an update. Washington, DC: National Center for Environmental Health, Office of Research and Development, EPA/600/P-97/001F, 10 April 1998. - 6. World Health Organization (WHO). Benzene. In: Air quality guidelines for Europe, second edition. Copenhagen: WHO Regional Publications, European Series, No. 91 2000. - 7. World Health Organization (WHO). Exposure to benzene: a major public health concern. Geneva: WHO Document Production Services 2010. - 8. Eden T. Aetiology of childhood leukemia. *Cancer Treat Rev* 2010;3:286–97. - 9. Wiemels J. Perspectives on the causes of childhood leukemia. *Chem Biol Interact* 2012;196:59-67. - 10. Pyatt D, Hays S. A review of the potential association between childhood leukemia and benzene. *Chem Biol Interact* 2010;184:151-64. - 11. Smith MT. Advances in understanding benzene health effects and susceptibility. *Annu Rev*Public Health 2010;31:133–48. - 12. Cocheo C, Boaretto C, Pagani D, et al. Field evaluation of thermal and chemical desorption BTEX radial diffusive sampler Radiello® compared with active (pumped) samplers for ambient air measurements. *J Environ Monit* 2009;11: 297-306. - 13. Greenland S. Basic methods for sensitivity analysis and external adjustment. In: Rothman KJ, Greenland S (Eds). *Modern Epidemiology*. 2nd ed. Philadelphia: Lippincott, Williams & Wilkins: 1998:343–58. - 14. Linet MS, Wacholder S, Hoar Zahm S. Interpreting epidemiologic research: lessons from studies of childhood cancer. *Pediatrics* 2003;112:218-32. - 15. Fuselli S, De Felice M, Morlino R, Turrio-Baldassarri L. A three year study on 14 VOCs at one site in Rome: levels, seasonal variations, indoor/outdoor ratio and temporal trends. *Int J Environ Res Public Health* 2010;7:3792-803. - 16. Regione Toscana. Progetto INDOOR: studio sui comfort e sugli inquinanti fisici e chimici nelle scuole (2004-2006). Firenze: Regione Toscana, Rapporti di Ricerca 371.7109455 2011; http://www.regione.toscana.it/regione/export/RT/sito- RT/Contenuti/sezioni/salute/visualizza asset.html 128139851.html (last accessed 30 July 2012). - 17. Fondelli MC, Bavazzano P, Grechi D, et al. Benzene exposure in a sample of population residing in a district of Florence. *Sci Tot Environ* 2008;392:41-9. - 18. Savitz D, Feingold L. Association of childhood cancer with residential traffic density, *Scand J Work Environ Health* 1989;15:360–3. - Feychting M, Svensson D, Ahlbom A. Exposure to motor vehicle exhaust and childhood cancer. Scand J Work Environ Health 1998;24:8-11. - 20. Weng HH, Tsai SS, Chen CC, et al. Childhood leukemia development and correlation with traffic air pollution in Taiwan using nitrogen dioxide as an air pollutant marker. *J Toxicol Environ Health A* 2008;71:434-8. - 21. Amigou A, Sermage-Faure C, Orsi L, et al. Road traffic and childhood leukemia: the ESCALE study (SFCE). *Environ Health Perspect* 2011;119:566–72. - 22. Langholz B, Ebi K, Thomas D, Peters J, London S. Traffic density and the risk of childhood leukemia in a Los Angeles case—control study. *Ann Epidemiol* 2002: 12: 482–7. - 23. Steffen C, Auclerc MF, Auvrignon A, et al. Acute childhood leukemia and environmental exposure to potential sources of benzene and other hydrocarbons: a case-control study. **Occup Environ Med 2004;61:773–8.** - 24. Reynolds P, Von Behren J, Gunier RB, et al. Residential exposure to traffic in California and childhood cancer. *Epidemiology* 2004;15: 6–12. - 25. Von Behren J, Reynolds P, Gunier RB, et al. Residential traffic density and childhood leukemia risk. *Cancer Epidemiol Biomarkers Prev* 2008;17:2298–301. - 26. Brosselin P, Rudant J, Orsi L, et al. Acute childhood leukemia and residence next to petrol stations and automotive repair garages: the ESCALE study (SFCE). *Occup Environ Med* 2009;66:598–606. - 27. Weng HH, Tsai SS, Chiu HF, et al. Childhood leukemia and traffic air pollution in Taiwan: petrol station density as an indicator. *J Toxicol Environ Health A* 2009;72:83-7. - 28. Crosignani P, Tittarelli A, Borgini A, Berrino F. Childhood leukemia and road traffic: a population-based case—control study. *Int J Cancer* 2004;108:596–9. - 29. Raaschou-Nielsen O, Hertel O, Thomsen BL, Olsen JH. Air pollution from traffic at the residence of children with cancer. *Am J Epidemiol* 2001;153:433–43. - 30. Urayama KY, Buffler PA, Gallagher ER, et al. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. *Int J Epidemiol* 2010;39:718-32. - 31. Von Behren J, Spector LG, Mueller BA, et al. Birth order and risk of childhood cancer: a pooled analysis from five U.S. studies. *Int J Cancer* 2011;128:2709-16. - 32. Kim S, Vermeulen R, Waidyanatha S, et al. Modeling human metabolism of benzene following occupational and environmental exposures. *Cancer Epidemiol Biomarkers Prev* 2006;15:2246–52. - 33. Protano C, Guidotti M, Manini P, et al. Benzene exposure in childhood: role of living environments and assessment of available tools. *Environ Int* 2010;36:779–87. - 34. Negri S, Bono R, Maestri L, et al. High-pressure liquid chromatographic—mass spectrometric determination of sorbic acid in urine: verification of formation of *trans,trans*-muconic acid. *Chem Biol Interact* 2005;153-154:243-6. - 35. Lash Tl, Fox MF, Fink AK. Applying quantitative bias analysis to epidemiologic data. Springer Science + Business Media, LLC 2009. - 36. Wild CP. Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. *Cancer Epidemiol Biomarkers Prev* 2005;14:1847–50. - 37. Rappaport SM, Smith MT. Environment and disease risks. Science 2010;330:460–461. - 38. Wild CP. The exposome: from concept to utility. Int J Epidemiol 2012;41:24–32. Table 1. Children included in the pilot study by selected characteristics | | | Cas | es | Cont | rols | |------------------------|---|-----|----|------|----------------| | | | N | % | N | % | | Gender | Female | 25 | 58 | 30 | 54 | | Gender | Male | 18 | 42 | 26 | 46 | | | [2,4) years | 5 | 12 | 9 | 16 | | Age at the survey | [4,6) years | 21 | 49 | 16 | 29 | | | [6,12] years | 17 | 40 | 31 | 55 | | | Turin | 7 | 16 | 9 | 16 | | | Milan | 8 | 19 | 13 | 23 | | |
Florence | 3 | 7 | 5 | 9 | | Residence* | Rome | 14 | 33 | 15 | 27 | | | Catania | 3 | 7 | 5 | 9 | | | Palermo | 4 | 9 | 6 | 11 | | | Cagliari | 4 | 9 | 3 | 5 | | | None | 20 | 47 | 27 | 48 | | 6 | One | 16 | 37 | 18 | 32 | | Parent smoking§ | Both | 4 | 9 | 11 | 20 | | | Missing | 3 | 7 | 0 | _ | | | No qualification | - | - | 1 | 2 | | | Primary school | 17 | 40 | 21 | 38 | | Father's | High school | 17 | 40 | 24 | 43 | | education [§] | University degree | 6 | 14 | 10 | 18 | | | Missing | 3 | 7 | _ | _ | | | No qualification | - | _ | _ | _ | | | Primary school | 19 | 44 | 17 | 30 | | Mother's | High school | 15 | 35 | 26 | 46 | | education [§] | University degree | 9 | 21 | 13 | 23 | | | Missing | - | | - | - | | | Only child | 10 | 23 | 12 | 21 | | Birth order§ | First born | 10 | 23 | 20 | 36 | | | Second born or higher birth order | 23 | 53 | 24 | 43 | | | No schooling yet | 15 | 35 | 16 | 29 | | Age at first | <3 years (crèche) | 14 | 33 | 9 | 16 | | schooling§ | [3,6) years (preschool) | 14 | 33 | 30 | 54 | | | [6-7] years (primary school) | 0 | - | 1 | 2 | | | Occupied since birth | 28 | 65 | 39 | <u>-</u>
70 | | Home at the time | Moved into after birth & before diagnosis | 13 | 30 | 12 | 21 | | of the benzene | Moved into after diagnosis & before interview | 1 | 2 | 5 | 9 | | survey [^] | Moved into after interview | 1 | 2 | - | _ | | | THO TEA INTO ATTER INTERVIEW | | | | | ^{*}At the time of diagnosis or the corresponding reference date for controls; [§]Information reported at the interview; [^]The ELF magnetic fields measurements, if the parents agreed, were made at the time of the interview. Table 2. Benzene concentration in personal and outdoor air samples, and urine level of cotinine and benzene metabolites by season and overall | | Obs (#) | Mean | SD | G-mean | G-SD | Min | | Percentiles | | Max | |---|---------|--------|--------|--------|------|--------|-------|-------------|--------|---------| | Benzene in personal air samples (µg/m³) | Obs (#) | iviean | 30 | G-mean | G-3D | IVIIII | p25 | p50 | p75 | IVIAX | | Spring | 57 | 2.51 | 1.89 | 2.10 | 1.75 | 0.60 | 1.50 | 1.82 | 3.11 | 11.12 | | Summer | 86 | 2.26 | 1.45 | 1.90 | 1.82 | 0.47 | 1.25 | 1.85 | 3.10 | 8.13 | | Autumn | 62 | 4.31 | 2.60 | 3.73 | 1.57 | 0.92 | 2.939 | 3.70 | 5.17 | 18.47 | | Winter | 56 | 4.04 | 1.78 | 3.67 | 1.73 | 1.55 | 2.34 | 4.00 | 5.24 | 9.03 | | Individual yearly averages | 99 | 3.00 | 1.45 | 2.66 | 1.67 | 0.75 | 2.05 | 2.90 | 3.83 | 9.00 | | Benzene in outdoor air samples (μg/m³) | | | | | | | • | | | | | Spring | 57 | 2.29 | 1.30 | 1.93 | 1.84 | 0.48 | 1.20 | 1.91 | 3.15 | 5.67 | | Summer | 86 | 1.94 | 1.20 | 1.65 | 1.75 | 0.39 | 1.12 | 1.58 | 2.28 | 6.92 | | Autumn | 62 | 3.99 | 2.58 | 3.05 | 1.92 | 0.08 | 1.93 | 3.42 | 5.63 | 11.18 | | Winter | 56 | 3.80 | 1.86 | 3.25 | 2.35 | 0.15 | 2.40 | 3.66 | 5.20 | 8.31 | | Individual yearly averages | 99 | 2.70 | 1.41 | 2.33 | 1.78 | 0.27 | 1.59 | 2.37 | 3.63 | 6.92 | | Cotinine (µg/ g creatinine) | | | | | | | • | | | | | Spring | 78 | 3.92 | 7.04 | 1.91 | 3.26 | 0.05 | 1.00 | 1.94 | 3.50 | 49.0 | | Summer | 78 | 3.20 | 5.52 | 1.50 | 3.59 | 0.09 | 0.82 | 1.68 | 3.71 | 41.4 | | Autumn | 76 | 4.54 | 8.51 | 1.92 | 3.92 | 0.05 | 1.20 | 1.93 | 4.30 | 48.7 | | Winter | 74 | 4.36 | 7.38 | 2.32 | 3.01 | 0.10 | 1.20 | 2.30 | 4.80 | 53.5 | | Individual yearly averages | 98 | 3.73 | 5.99 | 2.14 | 2.67 | 0.30 | 1.08 | 2.09 | 3.58 | 41.9 | | MA (μg/g creatinine) | | | | | | | | | | | | Spring | 81 | 104.22 | 69.28 | 87.43 | 1.79 | 17.00 | 60.27 | 82.00 | 126.99 | 349.00 | | Summer | 79 | 140.40 | 226.73 | 92.30 | 2.16 | 13.33 | 56.54 | 83.00 | 131.76 | 1680.00 | | Autumn | 76 | 128.24 | 124.04 | 99.57 | 1.94 | 30.21 | 60.16 | 102.48 | 147.21 | 893.04 | | Winter | 74 | 119.09 | 100.15 | 95.30 | 1.86 | 26.00 | 65.00 | 86.00 | 129.00 | 591.00 | | Individual yearly averages | 98 | 116.65 | 84.89 | 101.06 | 1.62 | 46.42 | 73.33 | 92.66 | 122.50 | 593.42 | | S-PMA (μg/g creatinine) | • | • | | | | | | | | | | Spring | 81 | 1.13 | 0.60 | 1.00 | 1.62 | 0.21 | 0.80 | 1.00 | 1.30 | 3.70 | | Summer | 79 | 1.12 | 0.54 | 1.02 | 1.54 | 0.41 | 0.72 | 1.00 | 1.39 | 3.30 | | Autumn | 76 | 1.53 | 0.93 | 1.33 | 1.67 | 0.49 | 0.97 | 1.29 | 1.84 | 5.80 | | Winter | 74 | 1.37 | 0.60 | 1.23 | 1.64 | 0.15 | 1.00 | 1.20 | 1.60 | 3.40 | | Individual yearly averages | 98 | 1.28 | 0.50 | 1.20 | 1.43 | 0.56 | 0.94 | 1.20 | 1.46 | 2.97 | Table 3. Personal exposure to benzene ($\ln \mu g/m^3$) by outdoor benzene concentration, cotinine, gender, age, season, province of residence, and caseness | | β | 95% CI (β) | p(Z) | |------------------------------|-----------------|-------------|---------| | Outdoor benzene(μg/m³) | 0.151 | 0.12; 0.19 | <0.001 | | Gender (male vs female) | -0.052 | -0.21; 0.11 | 0.522 | | Age (at the benzene survey) | Reference [6-12 |] years | | | [2-4) years | 0.027 | -0.20; 0.25 | 0.814 | | [4-6) years | -0.147 | -0.32; 0.03 | 0.098 | | Season | Reference Sprin | g | | | Summer | -0.027 | -0.18; 0.12 | 0.717 | | Autumn | 0.317 | 0.16; 0.48 | < 0.001 | | Winter | 0.330 | 0.17; 0.49 | <0.001 | | Residence | Reference = Tur | in | | | Milan | -0.038 | -0.28; 0.20 | 0.759 | | Florence - Rome | -0.208 | -0.45; 0.03 | 0.091 | | Catania - Palermo - Cagliari | -0.086 | -0.31; 0.13 | 0.443 | | Case vs control | -0.039 | -0.19; 0.12 | 0.623 | R^2 overall =0.4617 (within = 0.5364; between = 0.3603); Wald χ^2 =234.0; p<0.0001 ## **B.** Restricted data-set (≥2 repeats; 175 observations, 61 children) | | β | SE (β) | p(Z) | |--|------------------------------------|-----------------|---------| | Outdoor benzene(μg/m³) | 0.123 | 0.020 | <0.001 | | Cotinine (µg/g creatinine) | 0.023 | 0.011 | 0.039 | | Gender (male vs female) | -0.057 | 0.116 | 0.623 | | Age (at the benzene survey) | Reference [6-12] y | ears | | | [2-4) years | 0.050 | 0.161 | 0.757 | | [4-6) years | -0.199 | 0.121 | 0.100 | | Season | Reference = Spring | | | | Summer | -0.055 | 0.081 | 0.494 | | Autumn | 0.382 | 0.087 | < 0.001 | | Winter | 0.351 | 0.086 | < 0.001 | | Residence | Reference = Turin | | | | Milan | 0.038 | 0.155 | 0.807 | | Florence - Rome | -0.323 | 0.195 | 0.099 | | Catania - Palermo - Cagliari | -0.00001 | 0.138 | 1.000 | | Case vs control | -0.073 | 0.107 | 0.498 | | R ² overall =0.4858 (within = 0.5564; between | een = 0.3544); Wald χ^2 =1 | 71.89; p<0.0001 | | Table 4. Urinary excretion of S-PMA (In μ g/g creatinine) by personal benzene exposure (model 1) or outdoor benzene concentration plus urinary cotinine (model 2), controlling for gender, age, season, province of residence, and caseness | Model 1 (310 observations, 98 children) | β | 95% CI (β) | p(Z) | |--|--|--|--| | Personal benzene exposure (μg/m³) | 0.031 | 0.004; 0.06 | 0.024 | | Gender (male vs female) | -0.027 | -0.16; 0.11 | 0.695 | | Age (at the benzene survey) | Reference | [6-12] years | | | [2-4) years | 0.395 | 0.22; 0.57 | < 0.001 | | [4-6) years | -0.011 | -0.16; 0.14 | 0.890 | | Season | Reference | Spring | | | Summer | 0.043 | -0.09; 0.17 | 0.514 | | Autumn | 0.250 | 0.11; 0.38 | <0.001 | | Winter | 0.156 | 0.01; 0.30 | 0.033 | | Residence | Reference | Turin | | | Milan | 0.007 | -0.21; 0.23 | 0.949 | | Florence - Rome | 0.013 | -0.18; 0.21 | 0.898 | | Catania - Palermo - Cagliari | 0.068 | -0.14; 0.27 | 0.514 | | Case vs control | 0.053 | 0.647 | 0.415 | | | | | | | R^2 overall =0.1894 (within = 0.1263; between = 0. | 2174); Wald χ^2 =58.9 | 7; p <0.0001 | | | R^2 overall =0.1894 (within = 0.1263; between = 0. | 2174); Wald χ ² =58.9 | 7; p <0.0001 | | | R ² overall =0.1894 (within = 0.1263; between = 0. Model 2 (214 observations, 98 children) | 2174); Wald $\chi^2 = 58.9$ | 95% CI (β) | p(Z) | | Model 2 (214 observations, 98 children) | | · | p(Z)
0.605 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) | β | 95% CI (β) | | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) | β
0.009 | 95% CI (β)
-0.02; 0.04 | 0.605 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) | β
0.009
0.014
-0.012 | 95% CI (β)
-0.02; 0.04
0.001; 0.03 | 0.605
0.040 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) | β
0.009
0.014
-0.012 | 95% CI (β)
-0.02; 0.04
0.001; 0.03
-0.16; 0.14 | 0.605
0.040 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years | β
0.009
0.014
-0.012
Reference | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years | 0.605
0.040
0.875 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years | β
0.009
0.014
-0.012
Reference
0.308 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 | 0.605
0.040
0.875
0.008 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³)
Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season | β
0.009
0.014
-0.012
Reference
0.308
0.055 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 | 0.605
0.040
0.875
0.008 | | | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring | 0.605
0.040
0.875
0.008
0.516 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 | 0.605
0.040
0.875
0.008
0.516 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 0.200 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 | 0.605
0.040
0.875
0.008
0.516
0.582
0.012 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter Residence | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 | 0.605
0.040
0.875
0.008
0.516
0.582
0.012 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 Reference | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 Turin | 0.605
0.040
0.875
0.008
0.516
0.582
0.012
0.305 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter Residence Milan | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 Reference -0.053 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 Turin -0.28; 0.18 | 0.605
0.040
0.875
0.008
0.516
0.582
0.012
0.305
0.657 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter Residence Milan Florence - Rome | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 Reference -0.053 0.048 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 Turin -0.28; 0.18 -0.18; 0.28 | 0.605
0.040
0.875
0.008
0.516
0.582
0.012
0.305
0.657
0.687 | ## Exposure to benzene and childhood leukaemia: a pilot case-control study Susanna Lagorio¹, Daniela Ferrante², Alessandra Ranucci², Sara Negri³, Paolo Sacco³, Roberto Rondelli⁴, Santina Cannizzaro⁵, Maria Valeria Torregrossa⁶, Pierluigi Cocco⁷, Francesco Forastiere⁸, Lucia Miligi⁹, Luigi Bisanti¹⁰, Corrado Magnani² ### **Corresponding Author** Dr. Susanna Lagorio (MD, Senior Scientist) National Centre of Epidemiology, Surveillance and Health Promotion National Institute of Health Viale Regina Elena, 299 - 00161 Rome (Italy) Tel. +390649904304; Fax +390649904305 e-mail susanna.lagorio@iss.it **Keywords**: acute lymphoblastic leukaemia, benzene, extremely low frequency magnetic fields (ELF-MF), biomarkers, children, participation bias, confounding, epidemiologic methods. Word count: 45524608 ¹National Centre of Epidemiology, National Institute of Health, Rome, Italy ²Unit of Medical Statistics and Epidemiology, CPO Piemonte and University "Amedeo Avogadro" of Piemonte Orientale; Alessandria, Novara and Vercelli, Italy ³Fondazione Salvatore Maugeri, Centro Ricerche Ambientali; Padova and Pavia, Italy ⁴Italian Association of Paediatric Haematology and Oncology (AIEOP), Operation Office, Sant'Orsola Malpighi Hospital; Bologna, Italy ⁵Italian Cancer League, Ragusa Section; Ragusa Ibla, Italy ⁶Department of Sciences for Health Promotion, University of Palermo; Palermo, Italy ⁷Department of Public Health, Occupational Health Section, University of Cagliari; Cagliari, Italy ⁸Department of Epidemiology, Lazio Regional Health Service; Rome, Italy ⁹Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute; Florence, Italy ¹⁰Epidemiology Unit, Milan Local Health Agency; Milan, Italy #### **ABSTRACT** #### **Objectives** *Main purpose*: to assess the feasibility of a measurement-based assessment of personal benzene exposure in case-control studies of paediatric cancer. Additional aims: to identify the main sources of variability in personal exposure; to evaluate the performance of two benzene biomarkers; to verify the occurrence of participation bias; to check whether exposures to benzene and to 50 Hz magnetic fields were correlated, and might exert reciprocal confounding effects. #### Design Pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine. #### **Participants** Full-participation <u>was</u> obtained from 46 cases and 60 controls, with low dropout rates before 4 repeats (11% and 17%); additional 23 cases and 80 controls allowed collection of outdoor air samples only. #### Results The average benzene concentration in personal and outdoor air samples was 3 $\mu g/m^3$ (SD 1.45) and 2.7 $\mu g/m^3$ (SD 1.41), respectively. Personal exposure was strongly influenced by outdoor benzene concentrations, higher in the cold seasons than in warm seasons, and not affected by gender, age, area of residence, or caseness. Urinary excretion of S-PMA and personal benzene exposure were well correlated. Outdoor benzene levels were lower among participant controls compared to non-participants, but did not differ between participant and non-participant cases; the direction of the bias was found to depend on the cut-point chosen to distinguish exposed and unexposed. Exposures to benzene and ELF-MF were positively correlated. #### **Conclusions** Repeated individual measurements are needed to account for the seasonal variability in benzene exposure, and have the additional advantage of increasing the study power. Measurement-based assessment of benzene exposure in studies of paediatric cancer, although financially and logistically demanding, appear feasible and acceptable to children and their parents. #### **Article focus** - Benzene is an established causative factor for acute non lymphocytic leukaemia (AnLL), and there is limited evidence limited evidence for an association between exposure to this agent and other hematologic neoplasms including acute lymphocytic leukaemia and myelodysplastic syndrome. Exposure to benzene would increase the risk of leukaemia AnLL at relatively high levels of lifetime environmental exposure (≥120 ppb). While it seems unlikely that benzene is a major cause of leukaemia in the general population, children may represent a subpopulation with increased susceptibility. Available studies of benzene and childhood leukemia have provided inconsistent results, possibly due to the use of surrogate exposure proxies, and lack of analyses by leukaemia subtype. To get further insights on this topic, epidemiological studies based on objective estimates of environmental exposure to benzene have been recommended. - Our pilot study was aimed at evaluating the logistic feasibility of an assessment of personal benzene exposure based on repeated individual measurements within a case-control study of childhood leukemia. Additional aims were: (i) to estimate the level of benzene exposure in children and assess if, and how much, exposure variability was affected by a number of putative determinants; (ii) to evaluate the performance of urinary levels of *t-t*-muconic acid (MA) and sulpho-phenylmercapturic acid (S-PMA) as benzene biomarkers in children; (iii) to assess the presence of participation bias (which occurs when adhesion to the study protocol is associated with both the level of exposure and the presence / absence of the disease); (iv) to determine whether exposures to benzene and to 50 Hz magnetic fields (ELF-MF) were correlated, so that they could exert reciprocal confounding effects in the analyses of their relationship with childhood leukemia. #### **Key messages** - Eligibility for inclusion was restricted to 108 cases and 194 matched controls, aged 2 to 12 years at the time of the survey. Full participation rates were low (cases 43%, controls 31%), but additional 21% of cases and 41% of controls accepted the outdoor monitoring. Adherence of full participants to the scheduled four seasonal repeats was very satisfactory (cases 89%, controls 83%). - Personal exposure was strongly influenced by outdoor benzene concentrations, was higher in the cold seasons than in warm seasons, and was not affected by gender, age, area of residence, or caseness. Personal benzene exposure and urinary excretion of S-PMA (but not of
MA) were well correlated. Outdoor benzene levels were lower among participant controls compared to non-participants, but did not differ between participant and non-participant cases (a participation bias was indeed present). A positive association between exposures to benzene and ELF-MF was observed. Epidemiologic studies of paediatric cancer and estimates of environmental benzene exposure based on repeated seasonal measurements, although challenging, appear logistically feasible and acceptable to children and their parents. # Strengths and limitations - To our knowledge, this is the first pilot study of childhood leukaemia and measured personal benzene exposure. Its also has the merit of having addressed a number of methodological problems besides logistic feasibility issues. - Due to logistic reasons and resource constraints, the study size was very small. It must also be stressed that the expected greater accuracy of measurement-based exposures estimates, compared to surrogate exposure proxies, does not necessarily correspond to increased construct validity; this is especially true when measurements are used for retrospective postdiagnosis exposure assessments. #### **INTRODUCTION** Benzene is a ubiquitous air pollutant, that needs to be metabolized to become carcinogenic.[1-2] Benzene exposure and acute non lymphocytic leukaemia (AnLL) are causally related in adult humans, while there is limited evidence for an association between exposure to this agent and acute or chronic lymphocytic leukaemia, multiple myeloma, and non-Hodgkin's lymphoma.[3] Moreover, a dose-dependent association between benzene exposure and incidence of myelodysplastic syndrome has been observed among petroleum workers. [4] Exposure to benzene would increase the risk of <u>AnLL leukaemia</u> at levels of ≥40 ppm-years of occupational cumulative exposure, equivalent to a lifetime (76 years) environmental exposure of ≥120 ppb.[45] Due to the established carcinogenicity of benzene, WHO has not developed any guideline value for this chemical in air, while indicating that ambient benzene concentrations of 17, 1.7 and 0.17 $\mu g/m^3$ are associated with excess lifetime risks of leukaemia of 10^{-4} , 10^{-5} and 10^{-6} , respectively.[56-67] While it seems unlikely that benzene is a major cause of leukaemia in the general population exposed in the ppb range, children may represent a subpopulation with increased susceptibility—on intake or on key pharmacokinetic / pharmacodynamic processes. [1, 3] Childhood leukaemias have distinctive features compared to leukaemias in adults. The major subtypes are acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML), accounting for 80% and 15% of cases aged 0 to 14 years in white populations respectively.[8] Both subtypes are thought to develop through a first initiating event *in utero* (e.g. the TEL-AML1 gene fusion whose prevalence in newborns has been estimated at around 1% while it is observed in 25% of ALL cases) followed by further postnatal genetic changes.[8] The "second hit" might consist of additional idiopathic chromosomal translocations, as well as of exposures to biological, chemical or physical agents in precursor B cell acute lymphoblastic leukaemia (pre-B ALL) and some cases of acute myeloid leukaemia (AML), a first initiating genetic event has been shown to occur *in utero*, at a rate of up to 1% (for TEL-AML1 translocations in pre-B ALL). Further genetic changes are required to create a malignant clone.[9] Ionizing radiation, benzene, alkylators and topoisomerase II inhibitors are among the few confirmed environmental risk factors for AML, while delayed, dysregulated responses to common infections are likely to play a major role in the conversion of pre-leukemic clones into overt ALL.[78-9] Findings from available studies of benzene and childhood leukaemia are inconsistent, possibly due to the use of indirect estimates of exposure and lack of analyses by leukaemia subtype.[810] To advance current understanding of benzene health effects and susceptibility, studies of paediatric cancers that include estimates of environmental exposure to benzene, rather than surrogate exposure indicators, have been recommended.[911] Major challenges in pursuing this suggestion include the space- and time-variability of ambient benzene levels, the low exposure levels in children, and the inherent susceptibility of case-control studies (the design of choice for etiological studies of rare disease like childhood cancer) to selection and information bias. We evaluated the logistic feasibility of an assessment of benzene exposure based on repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine, in a pilot investigation within an Italian case-control study on environmental risk factors for childhood leukaemia (SETIL). Additional objectives of the pilot study were: - to investigate the relationship between level personal exposure to benzene and putative determinants (atmospheric benzene, second-hand tobacco smoke, individual traits); - to assess the performance of t-t-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) as benzene biomarkers in children; - to verify the occurrence of participation bias from differential adhesion to the benzene measurement study, and estimate the amount and direction of the distortion; - to check whether exposures to benzene and to extremely low frequency magnetic fields (ELF-MF) were correlated, and might eventually exert reciprocal confounding effects on the relationship with childhood leukaemia. #### **METHODS** #### Study population Incident cases of childhood leukaemia from 14 Italian regions, aged 0 to 10 years at diagnosis in 1998-2001, were eligible for enrolment in the SETIL study. Cases were ascertained through the national registry run by the Association of Paediatric Haematology and Oncology (AIEOP). Controls, matched to cases (2:1 ratio) on gender, date of birth, and region, were randomly selected from population lists. Information on several items concerning the children, their next-of-kin and dwellings, was collected by interview of parents. All interviewed families were invited to participate in a measurement study of indoor ELF-MF, while subsets of participants were asked to join two side-investigations, on exposure to gamma radiation and benzene, respectively. Eligibility for the benzene pilot study was restricted to 108 childhood leukaemia cases from seven Italian provinces (Turin, Milan, Florence, Rome, Catania, Palermo, and Cagliari), diagnosed between July 2000 and December 2001, and 194 matched controls. The study protocol was approved by the Piedmont Ethical Committee on 14 January 2002. # Sampling strategy and devices Due to the high daily and seasonal variability of atmospheric benzene concentrations, the protocol called for four repeated seasonal one-week samplings of breathing zone air per child over one year ("personal" air samples), with concurrent collection of urine samples and atmospheric air samples in proximity of the children's homes ("outdoor" air samples). Outdoor air sampling would also be performed, with an identical strategy, near the homes of all eligible non-participants. To study the day-to-day variability in exposure, 24-h repeated personal and indoor samples during four season-specific weeks would be collected from a subset of children and related homes. Personal air samples were collected by passive samplers (Radiello® radial symmetry diffusive sampler) worn by the child during the day and placed at the bedside at night. Radiello® samplers were also used to collect outdoor air samples, placed near the entrance of the dwellings (within 1 meter), at a vertical distance from the ground suitable to avoid infringements (2-2.5 m), stored in a plastic case to avoid rain or snow. At retrieval, the adsorbing cartridges were removed from the diffusive bodies and placed into glass storage tubes. The ID code of the child, along with dates and times of sampling start and end, were recorded on self-adhesive labels stuck on the tubes. The cartridges were sent to a single laboratory (Fondazione Salvatore Maugeri, Padova) for the chemical analyses. Daily urine samples (10 ml, from the last micturition before sleep) were collected for 7 subsequent days (70 ml per week) during each seasonal survey. The daily samples were pooled in one plastic vial, and kept in the freezer compartment of the home refrigerator until collection at the end of the week. The vials were transported to the local research centre in cool bags, and stored at –5 °C until delivery (packed in dry ice and usually in 2 weeks) to the laboratory (Fondazione Salvatore Maugeri, Pavia). Field work began between March 2002 and January 2003, and ended in October 2003 - July 2004, depending on the local research centre. # **Chemical determinations** Benzene concentrations in air sample were determined by an automated thermal desorber (ATD400, Perkin Elmer) coupled to a capillary gas-chromatography system (Autosystem XL, Perkin Elmer). The expanded uncertainty of the method, in the range 2.4 to 14.3 μ g/m³, was shown to be 18%.[$\frac{1012}{1}$] The limits of detection and quantification, over 1 week exposure, are 0.05 μ g/m³ and 0.1 μ g/m³. The urine analyses were performed using a high pressure liquid chromatography system (Alliance 2690, Waters) equipped with a spectrometric (SM) detector (ZQ, Waters) following a preliminary step of purification of the samples on pre-activated solid phase extraction (SPE) cartridges. The limit of detection (LOD), coefficient of variation (CV) and accuracy of the method were: LOD = 1 μ g/L, CV % = (1.22)-(1.10), accuracy % = (- 2.39)-(3.36) for S-PMA; LOD = 20 μ g/L, CV % = (1.33)-(1.06), accuracy % = (- 2.18)-(3.27) for MA; LOD = 1
μ g/L, CV % = (1.25)-(1.09), accuracy % = (- 2.29)-(3.33) for cotinine. Further details are provided in Appendix 1. The chemical determinations were completed by May 2005. ## Statistical analyses Measurements below the chemical-specific detection limits were assigned half such values and included in the analyses. The relationships between personal exposure to benzene and putative determinants (as well as between urinary excretion of benzene metabolites, benzene intake, and other covariates) were assessed by generalized least squares (GLS) models for repeated measurements (STATA v. 11, xtreg procedure). The GLS model is: $y_{it} = \alpha + X_{it}B + u_{it} + e_{it}$, where i (1 to n) is the number of observations collected at time t (1 to 4) and u_{it} and e_{it} are the error components. As concentrations of benzene and urinary analytes were log-normally distributed, we always included in the models log-transformed dependent variables. We used the odds ratio (OR), calculated from generalized estimating equations (GEE) for repeated individual measurements (STATA v. 11, procedure xtgee), to estimate the association between benzene exposure and dichotomous variables such as case-control or participation status. The general equation of the GEE model is $g\{E(y_j)\}=x_j\beta$, where g is the link function, herein a logit function. We calculated a participation bias factor following the method suggested by Greenland [bias factor = $(S_{1a}*S_{0b})/(S_{0a}*S_{1b})$], where S_{1a} , S_{0a} , S_{1b} , and S_{0b} denote the probabilities of selection (i.e. full participation in the benzene study) for exposed cases, unexposed cases, exposed controls, and unexposed controls.[$\frac{1}{1}$] When the bias factor equals 1, there is no bias, when it is above or below 1 the true OR will be biased respectively upward or downward by the magnitude of this factor. Multiple regression models were used to analyze the relation between estimated exposures to benzene and ELF-MF. #### **RESULTS** Participation and sampling outcome Out of 108 cases and 194 controls eligible for inclusion, 46 cases and 60 controls (43% and 31%) agreed to take full part in the benzene side-study (Figure 1). In addition, the parents of 23 cases and 80 controls who refused the personal exposure assessment accepted the outdoor monitoring (partial participation = 21% and 41%). Altogether 1467 air samples were collected. A small percentage (2%) were lost during monitoring (22 samplers stolen, 2 sampler plates broken, 3 cartridges lost), transport (8 missing labels) or chemical analysis (2 cartridges broken on arrival at the laboratory; 1 sample lost due to equipment failure). Benzene measurements from the day-to-day variability sub-study (19% of the total) could not be used because only four control children accepted the 24-h sampling scheme, and were replaced by the calculated weekly averages. A further 20% of benzene measurements was removed from the data-set due to lack of compliance with the study protocol (indoor samples collected in place of the personal ones from children refusing to wear the sampler; time-or place-mismatch of personal and outdoor samples; "orphan" personal or outdoor samples; duplicate season-specific measurements; non-participants replaced with children ineligible for the benzene side-study]. For the same reasons, 107 out of 417 chemical determinations in urine (26%) were discarded. Three cases and 5 controls were excluded from one or more analyses due to lack of complete measurement sets in all seasonal series and, although 89% and 83% of full-participant cases and controls did adhere to all four seasonal surveys, only 37% and 43% of them had four repeated analyzable observations. #### Personal characteristics of the children The families of cases participating in full to the benzene study had been interviewed on average 1.3 years (SD 0.47) after the date of diagnosis, and the control-families 1.5 years (SD 0.46) after the corresponding reference date. The delay between diagnosis and the first series of benzene measurements was 2 years (SD 0.53) for both cases and controls. Cases and controls were comparable in terms of gender, age, and father's attained educational level (Table 1). A higher proportion of controls than cases had both parents smoking, and control-mothers were more educated than case-mothers. There were similar proportions of only children in the case and control groups, while firstborn children were more frequent among controls than cases. Early schooling (day-care attendance of crèche) was more common in cases than in controls. At the time of the benzene survey, most children were still living in the home occupied at birth or in the house they moved into after birth but before the date of diagnosis (cases 95%; controls 91%). # Level, variability, and determinants of personal exposure to benzene The analyses of level, variability and determinants of personal exposure to benzene were based on 43 cases (39 ALL and 4 AML) and 56 controls, with 261 valid pairs of benzene concentrations in breathing zone and outdoor air (110 from cases and 151 from controls). A large proportion of these children (35%) had a single pair of concurrent measurements, unevenly distributed by season, with a disproportionally high number of summer samples (30 out of 35, all but one from a single centre). The distributions, overall and by season, of benzene concentrations in personal and outdoor air samples, and of cotinine, MA and S-PMA in urine are described in Table 2. Personal exposure to benzene was log-normally distributed (Shapiro-Wilk test = 0.938, p<0.001), and the mean benzene level over the individual yearly averages was 3 μ g/m³ (0.92 ppb). The distribution of benzene outdoor concentration was skewed to the left in all seasons and the yearly averages were log-normally distributed as well (Shapiro-Wilk test = 0.948, p = 0.001); the average yearly benzene level near the children's homes was $2.7 \,\mu g/m^3$ (0.83 ppb). Both outdoor benzene concentrations and personal exposure levels were higher in the cold seasons (autumn-winter) than in the warm ones (spring-summer). The European limit for benzene in air (5 μ g/m³) was exceeded by 5% of the yearly average outdoor concentrations, and by 8% of the yearly average levels in breathing zone air samples. A large proportion of autumn and winter measurements were above 5 μ g/m³ (35% and 25% outdoor; 26% and 30% of the personal exposure estimates). Cases and controls had similar levels of personal exposure to benzene: the leukaemia OR for a unit increase (1 μ g/m³) in personal benzene exposure was 0.93 (95% CI 0.77-1.13) adjusting for gender, age at the benzene survey (2-4; 4-6; 6-12 years), cotinine in urine (μ g/g creatinine), season, and province of residence (Turin; Milan; Florence - Rome; Catania - Palermo - Cagliari). A similar lack of association was found between the odd of disease and benzene concentration outside the children's homes [OR 0.94 (95% CI 0.80-1.09)], controlling for gender, age, smoking habits of the parents at the interview (non-smokers, mother or father smoking; both parents smoking), season, and province of residence. Further adjustment for birth order and age at first schooling had no material effect on the observed leukaemia-benzene relationship [personal exposure: OR 0.92 (95% CI 0.75-1.13); outdoor benzene: OR 0.95 (95% CI 0.81-1.13)]. As cases and controls had comparable levels of benzene exposure, we carried out the analyses illustrated in the forthcoming paragraphs on the whole data-set, although always controlling for caseness. Urinary cotinine concentration (µg/g of creatinine) was higher in children of smoking parents compared to children of non-smokers, and children with both parents smoking excreted a larger amount of cotinine than children with one parent smoking (Appendix Table A). Cotinine levels were higher in winter than in other seasons, and higher in children from central and southern Italy (Florence, Rome, Palermo, Catania, Cagliari) than in children from northern provinces (Turin and Milan). The high between- *vs* within-subject R² ratio is worth noting. Personal benzene exposure was strongly influenced by outdoor benzene concentrations (Table 3-A), and apparently not affected by gender or age; the season showed a modifying effect, with increasing levels of personal exposure during autumn and winter; the fraction of variability explained by the model was higher for the within-subject component than for the between-subject one. Exposure to second-hand tobacco smoke (estimated by cotinine excretion or by parental smoking habits) showed a trivial influence on personal exposure to benzene. The inclusion of urinary cotinine (µg/g creatinine) in the model described in Table 3-A, slightly decreased its goodness of fit [R^2 overall = 0.46; Wald χ^2 =189.49; R^2 within = 0.55; R^2 between = 0.35; β (cotinine) = 0.012; 95% CI = -0.003; 0.03)]; an alternative model, including smoking habits of the parents, did not perform any better [R^2 overall = 0.46; Wald χ^2 =216.44; R^2 within = 0.52; R^2 between = 0.39; β (one parent smoking) = 0.14; 95% CI = -0.02; 0.31; β (both parents smoking) = 0.17; 95% CI = -0.06; 0.39]. Children from central Italy (Florence and Rome) tended to have lower benzene concentrations in breathing zone air samples compared to residents in other provinces, all other things being equal (Table 3-A), possibly because of residual confounding from lack of samples collected in Rome other than in summer. We tried to verify this hypothesis by restricting the analyses to children with at least two series of measurements in different seasonal periods (cold and warm). The data-set reduced to 61 subjects (25 cases and 36 controls) and 220 pairs of personal-outdoor benzene measurements. Actually, children from Florence still showed (not significantly) lower levels of
personal exposure to benzene (β = - 0.27; 95% CI = -0.56; 0.03; p =0.074) compared to children from Turin. In the restricted data-set, however, independent effects of both outdoor benzene and urinary cotinine levels on personal benzene exposure were observed (Table 3-B). #### Benzene intake and urinary excretion of benzene metabolites Ninety-eight children (43 cases and 55 controls) and 310 pairs of urine and breathing zone air measurements (138 from cases and 172 from controls) were available for the analyses of the urinary excretion of benzene metabolites (MA and S-PMA) in relation to personal exposure to benzene. Urinary concentrations of S-PMA (In µg/g creatinine) were related to personal exposure to benzene (Table 4, Model 1). Youngest children (2-4 years at the benzene survey) excreted higher level of S-PMA compared to children aged 6-12 years, all other conditions being equal, and urinary concentration of S-PMA were higher in samples collected during the cold seasons compared to spring samples. The model, however, explained just 19% of the overall S-PMA variability. In an alternative model, including outdoor benzene concentrations and urinary cotinine in place of personal benzene exposure, we also observed an effect of the nicotine biomarker on S-PMA excretion (Table 4, Model 2). On the contrary, neither benzene concentrations in breathing zone air samples, nor outdoor benzene concentrations or cotinine levels explained the intra- and inter-individual variability in urinary levels of MA, controlling for gender, age, season, area of residence, and caseness (data not shown). #### Bias due to differential participation Available for the analysis of participation bias were 66 cases (43 full-participant and 23 partial-participant) and 136 controls (56 and 80), with 652 measurements of outdoor benzene concentrations (135 and 175 from full-participant cases and controls; 81 and 261 from partial-participant cases and controls). Benzene concentrations near the homes of full-participant controls were significantly lower than those in proximity of partial-participants' dwellings (OR = 0.88; 95% CI 0.80-0.97), adjusting for gender, age, season and place of residence, while there was no difference in ambient benzene levels between participant and non-participant cases (OR = 0.95; 95% CI 0.82-1.09). As participation in the study was also associated with the case-control status, assuming a causal association between exposure and disease, a selection bias might ensue. However, as parents of more exposed controls were less willing to accept to be interviewed, an upward distortion would be expected, which is at odds with the apparent lack of association between personal benzene exposure and leukaemia risk in the current study. To the aim of the current analysis, personal exposure to benzene was dichotomized around the median (3.25 $\mu g/m^3$), the 75th percentile (4.34 $\mu g/m^3$) or 5 $\mu g/m^3$ (the current limit for airborne benzene in Europe). The amount and direction of bias were found to depend on the cut-point chosen (Appendix Table B), whereas no bias is expected when the exposure is categorized around the median (bias factor = 1.03), and biases in the opposite directions are predicted using cut-off at p75 and at 5 $\mu g/m^3$ (0.64 and 1.42, respectively). # Relationship between exposures to benzene and ELF-MF Children with benzene and ELF-MF measurements made at the same house qualified for inclusion in the analysis of the relationship between estimated exposures to these agents. As only 35 cases and 46 controls met such criterion when benzene concentrations in breathing zone air samples were used as exposure indicator, we performed the analysis on 48 cases and 77 controls with place-comparable pairs of average yearly outdoor benzene concentration ($\mu g/m^3$) and 48 h TWAs of ELF-MF level in the child's bedroom (In μT). There was a positive association between estimated exposures to ELF-MF (dependent variable) and benzene (β = 0.177; 95% CI 0.06-0.29; p = 0.002); the multivariable regression model (including gender, age, province of residence, caseness, and participation in the benzene pilot study as covariates) explained 16% of the variability in the dependent variable [F (10, 114 df) = 2.13; p> F = 0.0271]. A steeper increase in ELF-MF level per unit increase in outdoor benzene concentration (β = 0.520; 95% CI 0.09-0.95; p = 0.019) was seen among the 81 children fully participating in the benzene pilot-study compared to the 44 partial-participants (Appendix Table C). Similar results, with a more accentuated increase in indoor magnetic induction level per unit increase in outdoor benzene concentration [β = 0.272; 95% CI = 0.09-0.45; p(t) = 0.003; R² = 0.19], were observed in the restricted data-set of 86 children with \geq 2 weekly samplings in alternate seasons. #### DISCUSSION We have carried out a pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated individual measurements made on average two years after diagnosis. The pilot study included side-investigations aimed at evaluating the performance of two biological indicators of benzene exposure in children, at estimating amount and direction of a possible participation bias, and at assessing the relation between estimated exposures to benzene and ELF magnetic fields. Due to the relatively low incidence of childhood cancers (10-15 for 100,000 person-years in the 0-14 year range in most industrialized countries), the case-control approach is the design of choice for analytical epidemiologic studies about potential risk factors for these diseases. Such a study design, however, is inherently prone to measurement errors stemming from the retrospective reconstruction of the exposures of interest, and to differential participation leading to control samples not representative of the study base. Therefore, findings from observational epidemiologic studies of postulated determinants for childhood malignancies are often inconsistent and always require a cautious and thoughtful interpretation.[1214] Although based on small numbers, some of the findings from the current study have a certain factual and methodological interest. Repeated samplings of breathing and outdoor air are indeed needed to account for the seasonal variability in environmental benzene levels.[1315-1416] On average, children participating in the current study appear to experience mean yearly levels of personal exposure to benzene not exceeding the European guidelines (although 8% percent of the yearly mean levels were above 5 μ g/m³). What we *a priori* considered the main sources of benzene exposure for children (ambient benzene levels and second-hand tobacco smoke) explained no more than half of the overall variability in personal exposure, which indicates the need to identify other sources of exposure particularly relevant, perhaps, during the cold seasons. In fact, in autumn-winter compared to spring-summer, we observed higher levels of personal exposure to benzene, of urinary cotinine and of S-PMA excretion, all other things being equal. These findings might be due to the lower ventilation rates in homes and schools during the cold seasons, to winter-specific sources of indoor benzene concentrations not considered in the current survey (e.g. fireplaces or other combustion sources), and/or to the seasonal variability in daily patterns of time spent in different micro-environments (e.g. within cars or buses).[4517] Some case-control studies have suggested an association between exposure to traffic density and childhood leukaemia;[1618-1921] however, negative findings have also been reported.[2022-2325] Positive associations between incidence of ALL in children and residential proximity to petrol stations were observed in three case—control studies.[2123, 2426-2527] An increased risk of childhood leukaemia in relation to estimated exposure to benzene was observed in a small Italian study,[2628] but not in a much larger case-control study carried out in Denmark and based on a sophisticated and validated exposure modelling.[2729] To our knowledge there is no previous study of childhood leukaemia and measured personal benzene exposure. Moreover, as only children aged 0 to 10 years at diagnosis were eligible for the SETIL study, the large majority of cases included in the current investigation were pre-B ALL. Cases and controls did not differ in terms of exposure to benzene, estimated either by benzene level in personal air samples or through outdoor benzene concentration, but the interpretation of this finding is hampered by the retrospective exposure assessment and the low statistical power of this preliminary investigation. That notwithstanding, due to the design based on repeated individual observations, the risk estimates have quite narrow confidence intervals. Thus the findings from this pilot study, in accordance with the limited evidence for an association between exposure to benzene and ALL,[3-__45] might also suggest that the levels of benzene exposure experienced by children living in Italian towns do not entail a detectable increase in the risk of ALL. etiologic role of altered patterns of infections and related immune stimulation during the first years of life, and one piece of supporting evidence is the consistent observation of an inverse association between ALL <u>risk</u> and day-care attendance.[2830] Studies of childhood ALL and birth order, on the other hand, have provided inconsistent result.[2931] Neither age at first schooling, Current perspectives on the causes of childhood leukaemia ALL increasingly point towards an nor birth order confounded the relation between childhood leukaemia and indicators of benzene exposure in the current study. S-PMA concentration measured in repeated weekly samples of the last micturition before sleep was found to reflect personal exposure to
benzene, although the available covariates explained a small fraction of the within- and between-subject variability of this benzene metabolite. This is a quite surprising result, considering that S-PMA is believed to represent less than 1% of urinary benzene metabolites for exposures to benzene at air concentrations between 0.1 and 10 ppm.[3032] Benzene exposure proved not able to explain the variability of MA urinary excretion observed in our children, consistent with findings from a previous Italian study.[3133] The low statistical power of the study, the low level of benzene exposure, and the lack of adjustment for the confounding effect of dietary intake of sorbic acid (a common food additive), may explain this finding.[3234] Full-participation rates were higher among cases than controls. Notwithstanding the fairly satisfactory proportions of children with measured outdoor benzene concentrations (61% and 70% of eligible cases and controls), the degree of partial-participation was lower among non- We observed a differential participation bias, which underscores the need to plan parallel bias analyses in any case-control study.[3335] The dependence of the participation bias factor on the cut-point chosen to dichotomize the exposure variable is of methodological interest. participant cases (21%) than among non-participant controls (41%). The positive association between the 48 h TWA of ELF-MF induction in the child's bedroom and the average yearly concentrations of outdoor benzene will need consideration in the interpretation of findings from the analyses of childhood leukaemia risk in relation to 50 Hz MF in the SETIL case-control study. Incidental failures during sample collection, transport or chemical analysis accounted for a negligible proportion of lost air or urine samples. However, substantial percentages of chemical measurements could not be included in current analyses because of misunderstanding of the sampling protocol. The day-to-day variability sub-study was clearly too demanding to be acceptable. In conclusion, the current pilot study suggests that epidemiologic studies of childhood leukaemia risk and measurement-based estimates of exposure to benzene are challenging but logistically feasible (provided that the study protocol specifies every single sampling detail and nothing is considered so obvious as to be omitted). Such an exposure assessment method could be considered by epidemiologists willing to involve in the "genome - exposome" approach to gain further insight into the relationship between benzene exposure and childhood leukaemia risk, with priority given to AML.[42, 3436-38] #### **ACKNOWLEDGEMENTS** The authors acknowledge the relevant contributions provided by Dr. Vincenzo Cocheo, Dr. Sergio Ghittori and Dr. Luciano Maestri (Fondazione Salvatore Maugeri) whose untimely death prevented their seeing the results of this study. The authors thank Prof. Lorenzo Gafà for his strong support to the carrying out of the research in Sicily, Caterina Boaretto (Fondazione Salvatore Maugeri) for her skilful collaboration in the analysis and quality control of the air samples, along with Patrizia Legittimo, Anna Maria Badiali, Cristina Fondelli, Alessandra Benvenuti (Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence); Paolo Guidotti (ITI, Florence); Giuliana Buscema (Italian Cancer League, Ragusa Section), Simona Trapani, Rosalia Maria Valenti (University of Palermo), Vanda Macerata (CPO Piemonte) for data collection, recording, and quality control, along with Dr. Susan Richman for the language revision. ### **FUNDING** The current investigation was co-funded by the Italian Ministry of Health (passive samplers and chemical determinations), the Italian Association for Research on Cancer along with the Ministry of University and Research (personnel, travel, consumables, and computing), and the Piedmont Region "Ricerca Sanitaria Finalizzata" (statistical analyses). ## **COMPETING INTERESTS** None. #### **REFERENCES** - Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for benzene. Atlanta, GA U.S. Department of Health and Human Services, Public Health Service 1997. - 2. Smith MT, Zhang L, McHale CM, et al. Benzene, the exposome and future investigations of leukemia etiology. *Chem Biol Interact* 2011;192:155–59. - 3. International Agency for Research on Cancer (IARC). A review of human carcinogens. F. Chemical agents and related occupations. Lyon (France): IARC Press, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 100, 2012. - 3.4. Schnatter AR, Glass DC, Tang G, Irons RD, Rushton L. Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. *J Natl Cancer Inst* 2012;104:1724-1737. - 4.5. Environmental Protection Agency (EPA). Carcinogenic effects of benzene: an update. Washington, DC: National Center for Environmental Health, Office of Research and Development, EPA/600/P-97/001F, 10 April 1998. - 5.6. World Health Organization (WHO). Benzene. In: Air quality guidelines for Europe, second edition. Copenhagen: WHO Regional Publications, European Series, No. 91 2000. - 6.7. World Health Organization (WHO). Exposure to benzene: a major public health concern. Geneva: WHO Document Production Services 2010. - 8. Eden T. Aetiology of childhood leukemia. *Cancer Treat Rev* 2010;3:286–97. - 7-9. Wiemels J. Perspectives on the causes of childhood leukemia. *Chem Biol Interact* 2012;196:59-67. - 8.10. Pyatt D, Hays S. A review of the potential association between childhood leukemia and benzene. *Chem Biol Interact* 2010;184:151-64. 2012). - 9-11. Smith MT. Advances in understanding benzene health effects and susceptibility. *Annu Rev*Public Health 2010;31:133–48. - 10.12. Cocheo C, Boaretto C, Pagani D, et al. Field evaluation of thermal and chemical desorption BTEX radial diffusive sampler Radiello[®] compared with active (pumped) samplers for ambient air measurements. *J Environ Monit* 2009;11: 297-306. - 41.13. Greenland S. Basic methods for sensitivity analysis and external adjustment. In: Rothman KJ, Greenland S (Eds). *Modern Epidemiology*. 2nd ed. Philadelphia: Lippincott, Williams & Wilkins: 1998:343–58. - <u>12.14.</u> Linet MS, Wacholder S, Hoar Zahm S. Interpreting epidemiologic research: lessons from studies of childhood cancer. *Pediatrics* 2003;112:218-32. - <u>13.15.</u> Fuselli S, De Felice M, Morlino R, Turrio-Baldassarri L. A three year study on 14 VOCs at one site in Rome: levels, seasonal variations, indoor/outdoor ratio and temporal trends. *Int J Environ Res Public Health* 2010;7:3792-803. - 14.16. Regione Toscana. Progetto INDOOR: studio sui comfort e sugli inquinanti fisici e chimici nelle scuole (2004-2006). Firenze: Regione Toscana, Rapporti di Ricerca 371.7109455 2011; http://www.regione.toscana.it/regione/export/RT/sito-RT/Contenuti/sezioni/salute/visualizza asset.html 128139851.html (last accessed 30 July - 45.17. Fondelli MC, Bavazzano P, Grechi D, et al. Benzene exposure in a sample of population residing in a district of Florence. *Sci Tot Environ* 2008;392:41-9. - 16.18. Savitz D, Feingold L. Association of childhood cancer with residential traffic density, *Scand J Work Environ Health* 1989;15:360–3. - <u>17.19.</u> Feychting M, Svensson D, Ahlbom A. Exposure to motor vehicle exhaust and childhood cancer. *Scand J Work Environ Health* 1998;24:8-11. - 18-20. Weng HH, Tsai SS, Chen CC, et al. Childhood leukemia development and correlation with traffic air pollution in Taiwan using nitrogen dioxide as an air pollutant marker. *J Toxicol Environ Health A* 2008;71:434-8. - <u>19.21.</u> Amigou A, Sermage-Faure C, Orsi L, et al. Road traffic and childhood leukemia: the ESCALE study (SFCE). *Environ Health Perspect* 2011;119:566–72. - 20.22. Langholz B, Ebi K, Thomas D, Peters J, London S. Traffic density and the risk of childhood leukemia in a Los Angeles case—control study. *Ann Epidemiol* 2002: 12: 482–7. - 21.23. Steffen C, Auclerc MF, Auvrignon A, et al. Acute childhood leukemia and environmental exposure to potential sources of benzene and other hydrocarbons: a case-control study. **Occup Environ Med 2004;61:773–8.** - 22.24. Reynolds P, Von Behren J, Gunier RB, et al. Residential exposure to traffic in California and childhood cancer. *Epidemiology* 2004;15: 6–12. - 23.25. Von Behren J, Reynolds P, Gunier RB, et al. Residential traffic density and childhood leukemia risk. *Cancer Epidemiol Biomarkers Prev* 2008;17:2298–301. - 24.26. Brosselin P, Rudant J, Orsi L, et al. Acute childhood leukemia and residence next to petrol stations and automotive repair garages: the ESCALE study (SFCE). *Occup Environ Med* 2009;66:598–606. - 25.27. Weng HH, Tsai SS, Chiu HF, et al. Childhood leukemia and traffic air pollution in Taiwan: petrol station density as an indicator. *J Toxicol Environ Health A* 2009;72:83-7. - <u>26.28.</u> Crosignani P, Tittarelli A, Borgini A, Berrino F. Childhood leukemia and road traffic: a population-based case–control study. *Int J Cancer* 2004;108:596–9. - 27.29. Raaschou-Nielsen O, Hertel O, Thomsen BL, Olsen JH. Air pollution from traffic at the residence of children with cancer. *Am J Epidemiol* 2001;153:433–43. - 28.30. Urayama KY, Buffler PA, Gallagher ER, et al. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. *Int J Epidemiol* 2010;39:718-32. - 29.31. Von Behren J, Spector LG, Mueller BA, et al. Birth order and risk of childhood cancer: a pooled analysis from five U.S. studies. *Int J Cancer* 2011;128:2709-16. - 30.32. Kim S, Vermeulen R, Waidyanatha S, et al. Modeling human metabolism of benzene following occupational and environmental exposures. *Cancer Epidemiol Biomarkers Prev* 2006;15:2246–52. - 31.33. Protano C,
Guidotti M, Manini P, et al. Benzene exposure in childhood: role of living environments and assessment of available tools. *Environ Int* 2010;36:779–87. - 32.34. Negri S, Bono R, Maestri L, et al. High-pressure liquid chromatographic–mass spectrometric determination of sorbic acid in urine: verification of formation of *trans,trans*-muconic acid. *Chem Biol Interact* 2005;153-154:243-6. - 33.35. Lash Tl, Fox MF, Fink AK. Applying quantitative bias analysis to epidemiologic data. Springer Science + Business Media, LLC 2009. - <u>36.</u> Wild CP. Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. *Cancer Epidemiol Biomarkers Prev* 2005;14:1847–50. - 37. Rappaport SM, Smith MT. Environment and disease risks. Science 2010;330:460-461. 34.38. Wild CP. The exposome: from concept to utility. Int J Epidemiol 2012;41:24-32. Formatted: Font: Italic Formatted: Font: Italic Table 1. Children included in the pilot study by selected characteristics | | | Cases | | Controls | | |---------------------------------|---|-------|-----|----------|-----| | | | N | % | N | % | | Gender | Female | 25 | 58 | 30 | 54 | | Gender | Male | 18 | 42 | 26 | 46 | | | [2,4) years | 5 | 12 | 9 | 16 | | Age at the survey | [4,6) years | 21 | 49 | 16 | 29 | | | [6,12] years | 17 | 40 | 31 | 55 | | | Turin | 7 | 16 | 9 | 16 | | | Milan | 8 | 19 | 13 | 23 | | | Florence | 3 | 7 | 5 | 9 | | Residence* | Rome | 14 | 33 | 15 | 27 | | | Catania | | 7 | 5 | 9 | | | Palermo | 4 | 9 | 6 | 11 | | | Cagliari | 4 | 9 | 3 | 5 | | | None | 20 | 47 | 27 | 48 | | | One | 16 | 37 | 18 | 32 | | Parent smoking [§] | Both | 4 | 9 | 11 | 20 | | | Missing | 3 | 7 | 0 | - | | | No qualification | - | - | 1 | 2 | | | Primary school | 17 | 40 | 21 | 38 | | Father's | High school | 17 | 40 | 24 | 43 | | education [§] | University degree | 6 | 14 | 10 | 18 | | | Missing | 3 | 7 | - | - | | | No qualification | | - | - | _ | | | Primary school | 19 | 44 | 17 | 30 | | Mother's education [§] | High school | 15 | 35 | 26 | 46 | | education | University degree | 9 | 21 | 13 | 23 | | | Missing | - | | - | - | | | Only child | 10 | 23 | 12 | 21 | | Birth order [§] | First born | 10 | 23 | 20 | 36 | | | Second born or higher birth order | 23 | 53 | 24 | 43 | | | No schooling yet | 15 | 35 | 16 | 29 | | Age at first schooling§ | <3 years (crèche) | 14 | 33 | 9 | 16 | | | [3,6) years (preschool) | 14 | 33 | 30 | 54 | | • | [6-7] years (primary school) | 0 | _ | 1 | 2 | | | Occupied since birth | 28 | 65 | 39 | 70 | | Home at the time | Moved into after birth & before diagnosis | 13 | 30 | 12 | 21 | | of the benzene | Moved into after diagnosis & before interview | 1 | 2 | 5 | 9 | | survey | Moved into after interview | 1 | 2 | - | - | | Total | | 43 | 100 | 56 | 100 | | | | | | | | ^{*}At the time of diagnosis or the corresponding reference date for controls; ⁵Information reported at the interview; [^]The ELF magnetic fields measurements, if the parents agreed, were made at the time of the interview. Table 2. Benzene concentration in personal and outdoor air samples, and urine level of cotinine and benzene metabolites by season and overall | | Ob - (#) | | D 41 | Percentiles | | | | | | | |---|----------|--------|--------|-------------|------|-------|-------|--------|--------|---------| | Benzene in personal air samples (μg/m³) | Obs (#) | Mean | SD | G-mean | G-SD | Min | p25 | p50 | p75 | Max | | Spring | 57 | 2.51 | 1.89 | 2.10 | 1.75 | 0.60 | 1.50 | 1.82 | 3.11 | 11.12 | | Summer | 86 | 2.26 | 1.45 | 1.90 | 1.82 | 0.47 | 1.25 | 1.85 | 3.10 | 8.13 | | Autumn | 62 | 4.31 | 2.60 | 3.73 | 1.57 | 0.92 | 2.939 | 3.70 | 5.17 | 18.47 | | Winter | 56 | 4.04 | 1.78 | 3.67 | 1.73 | 1.55 | 2.34 | 4.00 | 5.24 | 9.03 | | Individual yearly averages | 99 | 3.00 | 1.45 | 2.66 | 1.67 | 0.75 | 2.05 | 2.90 | 3.83 | 9.00 | | Benzene in outdoor air samples (μg/m³) | | | | | | | | • | -1 | • | | Spring | 57 | 2.29 | 1.30 | 1.93 | 1.84 | 0.48 | 1.20 | 1.91 | 3.15 | 5.67 | | Summer | 86 | 1.94 | 1.20 | 1.65 | 1.75 | 0.39 | 1.12 | 1.58 | 2.28 | 6.92 | | Autumn | 62 | 3.99 | 2.58 | 3.05 | 1.92 | 0.08 | 1.93 | 3.42 | 5.63 | 11.18 | | Winter | 56 | 3.80 | 1.86 | 3.25 | 2.35 | 0.15 | 2.40 | 3.66 | 5.20 | 8.31 | | Individual yearly averages | 99 | 2.70 | 1.41 | 2.33 | 1.78 | 0.27 | 1.59 | 2.37 | 3.63 | 6.92 | | Cotinine (µg/ g creatinine) | | | | | | | | • | -1 | | | Spring | 78 | 3.92 | 7.04 | 1.91 | 3.26 | 0.05 | 1.00 | 1.94 | 3.50 | 49.0 | | Summer | 78 | 3.20 | 5.52 | 1.50 | 3.59 | 0.09 | 0.82 | 1.68 | 3.71 | 41.4 | | Autumn | 76 | 4.54 | 8.51 | 1.92 | 3.92 | 0.05 | 1.20 | 1.93 | 4.30 | 48.7 | | Winter | 74 | 4.36 | 7.38 | 2.32 | 3.01 | 0.10 | 1.20 | 2.30 | 4.80 | 53.5 | | Individual yearly averages | 98 | 3.73 | 5.99 | 2.14 | 2.67 | 0.30 | 1.08 | 2.09 | 3.58 | 41.9 | | MA (μg/g creatinine) | | | | | | | | • | -1 | | | Spring | 81 | 104.22 | 69.28 | 87.43 | 1.79 | 17.00 | 60.27 | 82.00 | 126.99 | 349.00 | | Summer | 79 | 140.40 | 226.73 | 92.30 | 2.16 | 13.33 | 56.54 | 83.00 | 131.76 | 1680.00 | | Autumn | 76 | 128.24 | 124.04 | 99.57 | 1.94 | 30.21 | 60.16 | 102.48 | 147.21 | 893.04 | | Winter | 74 | 119.09 | 100.15 | 95.30 | 1.86 | 26.00 | 65.00 | 86.00 | 129.00 | 591.00 | | Individual yearly averages | 98 | 116.65 | 84.89 | 101.06 | 1.62 | 46.42 | 73.33 | 92.66 | 122.50 | 593.42 | | S-PMA (μg/g creatinine) | | | | | | | | | | | | Spring | 81 | 1.13 | 0.60 | 1.00 | 1.62 | 0.21 | 0.80 | 1.00 | 1.30 | 3.70 | | Summer | 79 | 1.12 | 0.54 | 1.02 | 1.54 | 0.41 | 0.72 | 1.00 | 1.39 | 3.30 | | Autumn | 76 | 1.53 | 0.93 | 1.33 | 1.67 | 0.49 | 0.97 | 1.29 | 1.84 | 5.80 | | Winter | 74 | 1.37 | 0.60 | 1.23 | 1.64 | 0.15 | 1.00 | 1.20 | 1.60 | 3.40 | | Individual yearly averages | 98 | 1.28 | 0.50 | 1.20 | 1.43 | 0.56 | 0.94 | 1.20 | 1.46 | 2.97 | Confidential - to be submitted for publication Table 3. Personal exposure to benzene (In $\mu g/m^3$) by outdoor benzene concentration, cotinine, gender, age, season, province of residence, and caseness | | β | 95% CI (β) | p(Z) | |------------------------------|-----------------|-------------|---------| | Outdoor benzene(μg/m³) | 0.151 | 0.12; 0.19 | <0.001 | | Gender (male vs female) | -0.052 | -0.21; 0.11 | 0.522 | | Age (at the benzene survey) | Reference [6-12 |] years | | | [2-4) years | 0.027 | -0.20; 0.25 | 0.814 | | [4-6) years | -0.147 | -0.32; 0.03 | 0.098 | | Season | Reference Sprin | g | | | Summer | -0.027 | -0.18; 0.12 | 0.717 | | Autumn | 0.317 | 0.16; 0.48 | < 0.001 | | Winter | 0.330 | 0.17; 0.49 | < 0.001 | | Residence | Reference = Tur | in | | | Milan | -0.038 | -0.28; 0.20 | 0.759 | | Florence - Rome | -0.208 | -0.45; 0.03 | 0.091 | | Catania - Palermo - Cagliari | -0.086 | -0.31; 0.13 | 0.443 | | Case vs control | -0.039 | -0.19; 0.12 | 0.623 | R^2 overall =0.4617 (within = 0.5364; between = 0.3603); Wald χ^2 =234.0; p<0.0001 # B. Restricted data-set (≥2 repeats; 175 observations, 61 children) | | β | SE (β) | p(Z) | | |--|---------------------|--------|--------|--| | Outdoor benzene(µg/m³) | 0.123 | 0.020 | <0.001 | | | Cotinine (µg/g creatinine) | 0.023 | 0.011 | 0.039 | | | Gender (male vs female) | -0.057 | 0.116 | 0.623 | | | Age (at the benzene survey) | Reference [6-12] ye | ears | | | | [2-4) years | 0.050 | 0.161 | 0.757 | | | [4-6) years | -0.199 | 0.121 | 0.100 | | | Season | Reference = Spring | | | | | Summer | -0.055 | 0.081 | 0.494 | | | Autumn | 0.382 | 0.087 | <0.001 | | | Winter | 0.351 | 0.086 | <0.001 | | | Residence | Reference = Turin | | | | | Milan | 0.038 | 0.155 | 0.807 | | | Florence - Rome | -0.323 | 0.195 | 0.099 | | | Catania - Palermo - Cagliari | -0.00001 | 0.138 | 1.000 | | | Case vs control | -0.073 | 0.107 | 0.498 | | | R^2 overall =0.4858 (within = 0.5564; between = 0.3544); Wald χ^2 =171.89; p<0.0001 | | | | | Confidential - to be submitted for publication Table 4. Urinary excretion of S-PMA (In $\mu g/g$ creatinine) by personal benzene exposure (model 1) or outdoor benzene concentration plus urinary cotinine (model 2), controlling for gender, age, season, province of residence, and caseness | Model 1 (310 observations, 98 children) | β | 95% CI (β) | p(Z) | | | |---|-------------------------|--------------|---------|--|--| | Personal benzene exposure (μg/m³) | 0.031 | 0.004; 0.06 | 0.024 | | | | Gender (male vs female) | -0.027 | -0.16; 0.11 | 0.695 | | | | Age (at the benzene survey) | Reference | [6-12] years | | | | | [2-4) years | 0.395 | 0.22; 0.57 | < 0.001 | | | | [4-6) years | -0.011 | -0.16; 0.14 | 0.890 | | | | Season | Reference | Spring | | | | | Summer | 0.043 | -0.09; 0.17 | 0.514 | | | | Autumn | 0.250 | 0.11; 0.38 | < 0.001 | | | | Winter | 0.156 | 0.01; 0.30 | 0.033 | | | | Residence | Reference | Turin | | | | | Milan | 0.007 | -0.21; 0.23 | 0.949 | | | | Florence - Rome | 0.013 | -0.18; 0.21 | 0.898 | | | | Catania - Palermo - Cagliari | 0.068 | -0.14; 0.27 | 0.514 | | | | Case vs control | 0.053 | 0.647 | 0.415 | | | | R ² overall =0.1894 (within = 0.1263; between = 0.2174 |); Wald $\chi^2 = 58.9$ | 7; p <0.0001 | | | | | | | | | | | | Model 2 (214 observations, 98 children) | β | 95% CI (β) | p(Z) | | | | Outdoor benzene concentration (µg/m³) | 0.009 | -0.02; 0.04 | 0.605 | | | | Cotinine (µg/g creatinine) | 0.014 | 0.001; 0.03 | 0.040 | | | | Gender (male vs female) | -0.012 | -0.16; 0.14 | 0.875 | | | | Age (at the benzene survey) | Reference | [6-12] years | | | | | [2-4) years | 0.308 | 0.08; 0.54 | 0.008 | | | | [4-6) years | 0.055 | -0.11; 0.22 | 0.516 | | | | Season | Reference | Spring | | | | | Summer | -0.040 | -0.18; 0.10 | 0.582 | | | | Autumn | 0.200 | 0.04; 0.36 | 0.012 | | | | Winter | 0.082 | -0.07; 0.24 | 0.305 | |
| | Residence | Reference | Turin | | | | | Milan | -0.053 | -0.28; 0.18 | 0.657 | | | | Florence - Rome | 0.048 | -0.18; 0.28 | 0.687 | | | | Catania - Palermo - Cagliari | 0.003 | -0.21; 0.22 | 0.974 | | | | Case vs control | 0.011 | -0.14; 0.16 | 0.882 | | | | R^2 overall =0.1158 (within = 0.1423; between = 0.0925); Wald χ^2 =27.59; p = 0.0063 | | | | | | Figure 1. Children eligible for inclusion and participation rates # Appendix 1 – Chemical determination: analytical conditions Benzene concentrations in air samples The main analytical conditions were the following: desorption at 320 °C for 10 min; overall split ratio 1:75; carrier gas nitrogen at 27 psi; column J&W PONA, 50 m, 0.2 mm id, 0.5 μ m film thickness; oven 35 °C for 1 min, 6 °C/min to 110 °C, 20 °C/min to 220 °C, 2 min. Urine analyses Pre-treatment and chromatographic conditions used for each analyte are described below. <u>S-PMA</u>. Pre-treatment of the urine sample (5 mL): calibration curve concentrations = 0, 5, 10, and 50 μg/L; acidification with HCl; centrifugation (10 minutes at 3500 rpm); purification on SPE (Isolute C18 500 mg/3 mL). Chromatographic conditions: Mobile Phase = 60% acetic acid 1% and 40% methanol; Flow = 0.3 mL/min; Column = Symmetry C18 3.0 x 150 mm, 3.5 μm (Waters); Column temperature = 29°C; Run time = 45 min; Volume injected = 21 μL; MS Method = Single Ion Recording of mass 238.0 in ESI neg; LR = 0.3 μg/L. $\overline{\text{MA}}$. Pre-treatment of the urine sample (2 mL): calibration curve concentrations: 0, 50, 200, 500, 1000 μg/L; centrifugation (10 minutes at 3500 rpm); purification on SPE (Isolute SAX 500 mg/3mL). Chromatographic conditions: Mobile Phase = 78 % formic acid 0.2 % and 22 % methanol; Flow = 0.3 mL/min; Column= Symmetry C18 3.0 x 150 mm, 3.5 μm (Waters); Column temperature = 30°C; Run time = 30 min; Volume injected = 21 μL. MS Method: Single Ion Recording of mass 141.0 in ESI neg; LR = 7 μg/L. Cotinine. Pre-treatment of the urine sample (2 mL): calibration curve concentrations: 0, 10, 50, 250, 1000, 3000 μ g/L; basification with Ammonium Hydroxide ACS Reagent; centrifugation (10 minutes at 3500 rpm); purification on SPE (Isolute ENV + 50 mg/3mL). Chromatographic conditions: Mobile Phase = 75 % ammonium acetate 3.7mM and 25 % methanol; Flow = 0.3 mL/min; Column = Symmetry C18 3.0 x 150 mm, 3.5 μ m (Waters); Column temperature = 30°C; Run time = 33 min; Volume of sample injected = 21 μ L. MS Method: Single Ion Recording of mass 177.2 in ESI pos; LR = 0.3 μ g/L. Appendix Table A. Urinary cotinine levels (In $\mu g/g$ of creatinine) by smoking habits of the parents, gender, age, season, province of residence, and caseness (295 observations from 95 children) | | β | 95% CI (β) | p(Z) | |------------------------------|----------------------|-------------|--------| | Parental smoking habits | Reference Nonsmok | ers | | | One parent smoking | 0.852 | 0.50; 1.20 | <0.001 | | Both parents smoking | 1.685 | 1.22; 2.15 | <0.001 | | Gender (male vs female) | 0.028 | -0.31; 0.37 | 0.872 | | Age (at the benzene survey) | Reference [6-12] yea | ars | | | [2-4) years | 0.214 | -0.22; 0.65 | 0.338 | | [4-6) years | 0.111 | -0.27; 0.49 | 0.566 | | Season | Reference Spring | | | | Summer | -0.193 | -0.43; 0.05 | 0.116 | | Autumn | -0.015 | -0.26; 0.23 | 0.901 | | Winter | 0.260 | 0.02; 0.50 | 0.035 | | Residence | Reference Turin | | | | Milan | -0.348 | -0.90; 0.20 | 0.215 | | Florence - Rome | 0.636 | 0.14; 1.13 | 0.011 | | Catania - Palermo - Cagliari | 0.511 | 0.002; 1.02 | 0.049 | | Case vs control | 0.229 | -0.09; 0.55 | 0.164 | # Appendix Table B. Participation bias factors calculated using different cut-points to dicothomize outdoor benzene concentrations | Cases Controls Cut-point = P75 Cases Controls | Participant Non Participant Participant Non Participant $6 = 4.34 \mu g/m^3$ Participant Non Participant | 18
11
28
44
Exposed | 25
12
28
36
Not Exposed | 1.03 | |---|---|---------------------------------|-------------------------------------|-------------| | Controls Cut-point = P75 Cases | Participant Non Participant 5 = 4.34 μg/m ³ Participant | 28
44
Exposed | 28
36 | | | Cut-point = P75 Cases | Non Participant
5 = 4.34 μg/m ³
Participant | 44
Exposed | 36 | | | Cut-point = P75 Cases | i = 4.34 μg/m³
Participant | Exposed | | | | Cases | Participant | | Not Exposed | | | | | 4 | | Bias factor | | | Non Participant | · | 39 | | | Controls | | 7 | 16 | 0.64 | | Controls | Participant | 14 | 42 | 0.04 | | | Non Participant | 26 | 54 | | | Cut-point = 5 μ _ξ | g/m³ | Exposed | Not Exposed | Bias factor | | Cases | Participant | 3 | 40 | | | Cases | Non Participant | 4 | 19 | 1.42 | | Controls | Participant | 4 | 52 | | | Controls | Non Participant | 16 | 64 | | | | | | | | Appendix Table C. Relationship between estimated exposures to ELF-MF (48 h TWA in the child's bedroom, In μT) and to outdoor benzene (individual averages of repeated seasonal measurements, µg/m³), controlling for gender, age, province of residence, caseness, and participation in the benzene pilot study (125 observations; 48 cases and 77 controls) | | β | 95% CI (β) | p (t) | |--|----------------|-------------|-------| | Outdoor benzene (μg/m³) | 0.177 | 0.06; 0.29 | 0.002 | | Gender (male vs female) | -0.332 | -0.74; 0.08 | 0.112 | | Age (at diagnosis) | Reference [6-1 | .0] years | | | [0-2) years | 0.120 | -0.56; 0.80 | 0.728 | | [2-4) years | 0.166 | -0.38; 0.72 | 0.550 | | [4-6) years | 0.334 | -0.29; 0.96 | 0.295 | | Residence | Reference Turi | in | | | Milan | -0.007 | -0.65; 0.64 | 0.984 | | Florence-Rome | 0.135 | -0.50; 0.76 | 0.673 | | Catania-Palermo-Cagliari | 0.521 | -0.13; 1.17 | 0.116 | | Case vs control | -0.024 | -0.43; 0.38 | 0.908 | | Participant vs non participant | 0.520 | 0.09; 0.95 | 0.019 | | F (10, 114 df) = 2.13; prob > F = 0.0271; R ² | = 0.1577 | | | | | | | | STROBE Statement—Checklist of items that should be included in reports of case-control studies | | Item
No | Recommendation | |------------------------|------------|---| | Title and abstract | 1★ | (a) Indicate the study's design with a commonly used term in the title or the abstract | | | | (b) Provide in the abstract an informative and balanced summary of what was done | | | | and what was found | | Introduction | | | | Background/rationale | 2★ | Explain the scientific background and rationale for the investigation being reported | | Objectives | 3★ | State specific objectives, including any prespecified hypotheses | | Methods | | | | Study design | 4★ | Present key elements of study design early in the paper | | Setting | 5★ | Describe the setting, locations, and relevant dates, including periods of recruitment, | | 58 | | exposure, follow-up, and data collection | | Participants | 6 * | (a) Give the eligibility criteria, and the sources and methods of case ascertainment | | - m-11-4-p-11-11 | | and control selection. Give the rationale for the choice of cases and controls | | | | (b) For matched studies, give matching criteria and the number of controls per case | | Variables | 7★ | Clearly define all outcomes, exposures, predictors, potential confounders, and effect | | | | modifiers. Give diagnostic criteria, if applicable | | Data sources/ | 8*★ | For each variable of interest, give sources of data and details of methods of | | measurement | | assessment (measurement). Describe comparability of assessment methods if there | | | | is more than one group | | Bias | 9★ | Describe any efforts to address potential sources of bias | | Study size | 10★ | Explain how the study size was arrived at | | Quantitative variables | 11★ | Explain how quantitative variables were handled in the analyses. If applicable, | | | | describe which groupings were chosen and why | | Statistical methods | 12★ | (a) Describe all statistical methods, including those used to control for confounding | | | | (b) Describe any methods used to examine subgroups and interactions | | | | (c) Explain how missing data were addressed | | | | (d) If applicable, explain how matching of cases and controls was addressed | | | | (e) Describe any sensitivity analyses | | Results | | | | Participants | 13*★ | (a) Report numbers of individuals at each stage of study—eg numbers potentially | | | | eligible, examined for eligibility, confirmed eligible, included in the study, | | | | completing follow-up, and analysed | | | | (b) Give reasons for non-participation at each stage | | | | (c) Consider use of a flow diagram | | Descriptive data | 14*★ | (a) Give characteristics of study participants (eg demographic, clinical, social) and | | | | information on exposures and potential confounders | | | | (b) Indicate number of participants with missing data for each variable of interest | | Outcome data | 15*★ | Report numbers in each exposure category, or summary measures of exposure | | Main results | 16★ | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and | | | | their precision (eg, 95% confidence interval). Make clear which confounders were | | | | adjusted for and why they were included | | | | (b) Report category boundaries when continuous variables were categorized | | | | (c) If relevant, consider translating estimates of relative risk into absolute risk for a | | | | meaningful time period | | Other analyses | 17★ | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses | |------------------|-----|--| | Discussion | | | | Key results | 18★ |
Summarise key results with reference to study objectives | | Limitations | 19★ | Discuss limitations of the study, taking into account sources of potential bias or imprecision. | | | | Discuss both direction and magnitude of any potential bias | | Interpretation | 20★ | Give a cautious overall interpretation of results considering objectives, limitations, | | | | multiplicity of analyses, results from similar studies, and other relevant evidence | | Generalisability | 21★ | Discuss the generalisability (external validity) of the study results | | Other informati | on | | | Funding | 22★ | Give the source of funding and the role of the funders for the present study and, if applicable, | | | | for the original study on which the present article is based | ^{*}Give information separately for cases and controls. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org. # Exposure to benzene and childhood leukaemia: a pilot casecontrol study | Journal: | BMJ Open | |----------------------------------|--| | Manuscript ID: | bmjopen-2012-002275.R2 | | Article Type: | Research | | Date Submitted by the Author: | 23-Jan-2013 | | Complete List of Authors: | Lagorio, Susanna; National Institute of Health, National Centre for Epidemiology, Surveillance, and Health Promotion Ferrante, Daniela; University "Amedeo Avogadro" of Piemonte Orientale, Unit of Medical Statistics and Epidemiology Ranucci, Alessandra; University "Amedeo Avogadro" of Piemonte Orientale, Unit of Medical Statistics and Epidemiology Negri, Sara; Fondazione Salvatore Maugeri, Centro Ricerche Ambientali Sacco, Paolo; Fondazione Salvatore Maugeri, Centro Ricerche Ambientali Rondelli, Roberto; Italian Association of Paediatric Haematology and Oncology (AIEOP), Operation Office, Sant'Orsola Malpighi Hospital Cannizzaro, Santina; Italian Cancer League, Ragusa Section Torregrossa, Valeria; University of Palermo, Department of Sciences for Health Promotion Cocco, Pierluigi; University of Cagliari, Department of Public Health, Occupational Health Section Forastiere, Francesco; Lazio Regional Health Service, Department of Epidemiology Miligi, Lucia; ISPO Cancer Prevention and Research Institute, Occupational and Environmental Epidemiology Unit Bisanti, Luigi; Milan Local Health Agency, Epidemiology Unit Magnani, Corrado; University "Amedeo Avogadro" of Piemonte Orientale, Unit of Medical Statistics and Epidemiology | | Primary Subject Heading : | Epidemiology | | Secondary Subject Heading: | Oncology, Paediatrics, Public health | | Keywords: | Paediatric oncology < PAEDIATRICS, Exposure assessment, Benzene | | | | SCHOLARONE™ Manuscripts ## Exposure to benzene and childhood leukaemia: a pilot case-control study Susanna Lagorio¹, Daniela Ferrante², Alessandra Ranucci², Sara Negri³, Paolo Sacco³, Roberto Rondelli⁴, Santina Cannizzaro⁵, Maria Valeria Torregrossa⁶, Pierluigi Cocco⁷, Francesco Forastiere⁸, Lucia Miligi⁹, Luigi Bisanti¹⁰, Corrado Magnani² ### **Corresponding Author** Dr. Susanna Lagorio (MD, Senior Scientist) National Centre of Epidemiology, Surveillance and Health Promotion Viale Regina Elena, 299 - 00161 Rome (Italy) Tel. +390649904304; Fax +390649904305 e-mail susanna.lagorio@iss.it Keywords: acute lymphoblastic leukaemia, benzene, extremely low frequency magnetic fields (ELF-MF), biomarkers, children, participation bias, confounding, epidemiologic methods. Word count: 4654 ¹National Centre of Epidemiology, National Institute of Health, Rome, Italy ²Unit of Medical Statistics and Epidemiology, CPO Piemonte and University "Amedeo Avogadro" of Piemonte Orientale; Alessandria, Novara and Vercelli, Italy ³Fondazione Salvatore Maugeri, Centro Ricerche Ambientali; Padova and Pavia, Italy ⁴Italian Association of Paediatric Haematology and Oncology (AIEOP), Operation Office, Sant'Orsola Malpighi Hospital; Bologna, Italy ⁵Italian Cancer League, Ragusa Section; Ragusa Ibla, Italy ⁶Department of Sciences for Health Promotion, University of Palermo; Palermo, Italy ⁷Department of Public Health, Occupational Health Section, University of Cagliari; Cagliari, Italy ⁸Department of Epidemiology, Lazio Regional Health Service; Rome, Italy Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute; Florence, Italy ¹⁰Epidemiology Unit, Milan Local Health Agency; Milan, Italy #### **ABSTRACT** ## **Objectives** *Main purpose*: to evaluate the feasibility of a measurement-based assessment of benzene exposure in case-control studies of paediatric cancer. Additional aims: to identify the sources of exposure variability; to assess the performance of two benzene biomarkers; to verify the occurrence of participation bias; to check whether exposures to benzene and to 50 Hz magnetic fields were correlated, and might exert reciprocal confounding effects. #### Design Pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine. ## **Participants** 108 cases and 194 controls were eligible for inclusion. ## Results Full-participation was obtained from 46 cases and 60 controls, with low dropout rates before 4 repeats (11% and 17%); additional 23 cases and 80 controls allowed collection of outdoor air samples only. The average benzene concentration in personal and outdoor air samples was 3 $\mu g/m^3$ (SD 1.45) and 2.7 $\mu g/m^3$ (SD 1.41), respectively. Personal exposure was strongly influenced by outdoor benzene concentrations, higher in the cold seasons than in warm seasons, and not affected by gender, age, area of residence, or caseness. Urinary excretion of S-PMA and personal benzene exposure were well correlated. Outdoor benzene levels were lower among participant controls compared to non-participants, but did not differ between participant and non-participant cases; the direction of the bias was found to depend on the cut-point chosen to distinguish exposed and unexposed. Exposures to benzene and ELF-MF were positively correlated. #### **Conclusions** Repeated individual measurements are needed to account for the seasonal variability in benzene exposure, and have the additional advantage of increasing the study power. Measurement-based assessment of benzene exposure in studies of childhood leukemia appear feasible, although financially and logistically demanding. #### ARTICLE SUMMARY #### **Article focus** - Benzene is an established cause of acute non lymphocytic leukaemia (AnLL), and there is limited evidence for an association between exposure to this agent and other hematologic neoplasms. Epidemiologic studies of benzene and childhood leukemia have provided inconsistent results, possibly due to the use of surrogate exposure proxies, and lack of analyses by leukaemia subtype. - Our pilot study was aimed at evaluating the logistic feasibility of an assessment of benzene exposure based on repeated measurements in a case-control study of childhood leukemia. A few methodological issues were also addressed (putative determinants of exposure variability; performance of urinary levels of MA and S-PMA as benzene biomarkers in children; participation bias; possible reciprocal confounding effects of exposures to benzene and to ELFMF). ## **Key messages** - Eligible for inclusion were 108 cases and 194 matched controls, aged 2 to 12 years at the time of the survey. Full participation rates were low, , but the outdoor monitoring was accepted by 64% of cases and 72% of controls . Adherence of full participants to the scheduled repeats was very satisfactory (cases 89%, controls 83%). - Personal exposure was strongly influenced by outdoor benzene concentrations, was higher in the cold seasons than in warm seasons, and was not affected by gender, age, area of residence, or caseness. Personal benzene exposure and urinary excretion of S-PMA (but not of MA) were well correlated. A participation bias was indeed present. A positive association between exposures to benzene and ELF-MF was observed. - Epidemiologic studies of paediatric cancer and estimates of environmental benzene exposure based on repeated seasonal measurements, although challenging, appear
logistically feasible. ## **Strengths and limitations** To our knowledge, this is the first pilot study of childhood leukaemia and measured personal benzene exposure. The study size is very small. The greater accuracy of measurement-based exposures estimates, #### INTRODUCTION Benzene is a ubiquitous air pollutant, that needs to be metabolized to become carcinogenic.[1-2] Benzene exposure and acute non lymphocytic leukaemia (AnLL) are causally related in adult humans, while there is limited evidence for an association between exposure to this agent and acute or chronic lymphocytic leukaemia, multiple myeloma, and non-Hodgkin's lymphoma.[3] Moreover, a dose-dependent association between benzene exposure and incidence of myelodysplastic syndrome has been observed among petroleum workers. [4] cumulative exposure, equivalent to a lifetime (76 years) environmental exposure of \geq 120 ppb.[5] Due to the established carcinogenicity of benzene, WHO has not developed any guideline value for this chemical in air, while indicating that ambient benzene concentrations of 17, 1.7 and 0.17 $\mu g/m^3$ are associated with excess lifetime risks of leukaemia of 10^{-4} , 10^{-5} and 10^{-6} , respectively.[6-7] Exposure to benzene would increase the risk of AnLL at levels of ≥40 ppm-years of occupational While it seems unlikely that benzene is a major cause of leukaemia in the general population exposed in the ppb range, children may represent a subpopulation with increased susceptibility.[1, 3] Childhood leukaemias have distinctive features compared to leukaemias in adults. The major subtypes are acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML), accounting for 80% and 15% of cases aged 0 to 14 years in white populations respectively.[8] Both subtypes are thought to develop through a first initiating event *in utero* (e.g. the TEL-AML1 gene fusion whose prevalence in newborns has been estimated at around 1% while it is observed in 25% of ALL cases) followed by further postnatal genetic changes.[8] The "second hit" might consist of additional idiopathic chromosomal translocations, as well as of exposures to biological, chemical or physical agents.[9] Ionizing radiation, benzene, alkylators and topoisomerase II inhibitors are among the few confirmed environmental risk factors for AML, while delayed, dysregulated responses to common infections are likely to play a major role in the conversion of pre-leukemic clones into overt ALL.[8-9] Findings from available studies of benzene and childhood leukaemia are inconsistent, possibly due to the use of indirect estimates of exposure and lack of analyses by leukaemia subtype.[10] To advance current understanding of benzene health effects and susceptibility, studies of paediatric cancers that include estimates of environmental exposure to benzene, rather than surrogate exposure indicators, have been recommended.[11] Major challenges in pursuing this suggestion include the space- and time-variability of ambient benzene levels, the low exposure levels in children, and the inherent susceptibility of case-control studies (the design of choice for etiological studies of rare disease like childhood cancer) to selection and information bias. We evaluated the logistic feasibility of an assessment of benzene exposure based on repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine, in a pilot investigation within an Italian case-control study on environmental risk factors for childhood leukaemia (SETIL). Additional objectives of the pilot study were: - to investigate the relationship between level personal exposure to benzene and putative determinants (atmospheric benzene, second-hand tobacco smoke, individual traits); - to assess the performance of t-t-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) as benzene biomarkers in children; - to verify the occurrence of participation bias from differential adhesion to the benzene measurement study, and estimate the amount and direction of the distortion; - to check whether exposures to benzene and to extremely low frequency magnetic fields (ELF-MF) were correlated, and might eventually exert reciprocal confounding effects on the relationship with childhood leukaemia. ### **METHODS** ## Study population Incident cases of childhood leukaemia from 14 Italian regions, aged 0 to 10 years at diagnosis in 1998-2001, were eligible for enrolment in the SETIL study. Cases were ascertained through the national registry run by the Association of Paediatric Haematology and Oncology (AIEOP). Controls, matched to cases (2:1 ratio) on gender, date of birth, and region, were randomly selected from population lists. Information on several items concerning the children, their next-of-kin and dwellings, was collected by interview of parents. All interviewed families were invited to participate in a measurement study of indoor ELF-MF, while subsets of participants were asked to join two side-investigations, on exposure to gamma radiation and benzene, respectively. Eligibility for the benzene pilot study was restricted to 108 childhood leukaemia cases from seven Italian provinces (Turin, Milan, Florence, Rome, Catania, Palermo, and Cagliari), diagnosed between July 2000 and December 2001, and 194 matched controls. The study protocol was approved by the Piedmont Ethical Committee on 14 January 2002. ## Sampling strategy and devices Due to the high daily and seasonal variability of atmospheric benzene concentrations, the protocol called for four repeated seasonal one-week samplings of breathing zone air per child over one year ("personal" air samples), with concurrent collection of urine samples and atmospheric air samples in proximity of the children's homes ("outdoor" air samples). Outdoor air sampling would also be performed, with an identical strategy, near the homes of all eligible non-participants. To study the day-to-day variability in exposure, 24-h repeated personal and indoor samples during four season-specific weeks would be collected from a subset of children and related homes. Personal air samples were collected by passive samplers (Radiello® radial symmetry diffusive sampler) worn by the child during the day and placed at the bedside at night. Radiello® samplers were also used to collect outdoor air samples, placed near the entrance of the dwellings (within 1 meter), at a vertical distance from the ground suitable to avoid infringements (2-2.5 m), stored in a plastic case to avoid rain or snow. At retrieval, the adsorbing cartridges were removed from the diffusive bodies and placed into glass storage tubes. The ID code of the child, along with dates and times of sampling start and end, were recorded on self-adhesive labels stuck on the tubes. The cartridges were sent to a single laboratory (Fondazione Salvatore Maugeri, Padova) for the chemical analyses. Daily urine samples (10 ml, from the last micturition before sleep) were collected for 7 subsequent days (70 ml per week) during each seasonal survey. The daily samples were pooled in one plastic vial, and kept in the freezer compartment of the home refrigerator until collection at the end of the week. The vials were transported to the local research centre in cool bags, and stored at –5 °C until delivery (packed in dry ice and usually in 2 weeks) to the laboratory (Fondazione Salvatore Maugeri, Pavia). Field work began between March 2002 and January 2003, and ended in October 2003 - July 2004, depending on the local research centre. #### **Chemical determinations** Benzene concentrations in air sample were determined by an automated thermal desorber (ATD400, Perkin Elmer) coupled to a capillary gas-chromatography system (Autosystem XL, Perkin Elmer). The expanded uncertainty of the method, in the range 2.4 to 14.3 μ g/m³, was shown to be 18%.[12] The limits of detection and quantification, over 1 week exposure, are 0.05 μ g/m³ and 0.1 μ g/m³. The urine analyses were performed using a high pressure liquid chromatography system (Alliance 2690, Waters) equipped with a spectrometric (SM) detector (ZQ, Waters) following a preliminary step of purification of the samples on pre-activated solid phase extraction (SPE) cartridges. The limit of detection (LOD), coefficient of variation (CV) and accuracy of the method were: LOD = 1 μ g/L, CV % = (1.22)-(1.10), accuracy % = (- 2.39)-(3.36) for S-PMA; LOD = 20 μ g/L, CV % = (1.33)-(1.06), accuracy % = (- 2.18)-(3.27) for MA; LOD = 1 μ g/L, CV % = (1.25)-(1.09), accuracy % = (- 2.29)-(3.33) for cotinine. Further details are provided in Appendix 1. The chemical determinations were completed by May 2005. ## Statistical analyses Measurements below the chemical-specific detection limits were assigned half such values and included in the analyses. The relationships between personal exposure to benzene and putative determinants (as well as between urinary excretion of benzene metabolites, benzene intake, and other covariates) were assessed by generalized least squares (GLS) models for repeated measurements (STATA v. 11, xtreg procedure). The GLS model is: $y_{it} = \alpha + X_{it}B + u_{it} + e_{it}$, where i (1 to n) is the number of observations collected at time t (1 to 4) and u_{it} and e_{it} are the error components. As concentrations of benzene and urinary analytes were log-normally distributed, we always included in the models log-transformed dependent variables. We used the odds ratio (OR), calculated from generalized estimating equations (GEE) for repeated individual measurements (STATA v. 11, procedure xtgee), to estimate the association between benzene exposure and dichotomous variables such as case-control or participation status. The general equation of the GEE model is $g\{E(y_j)\}=x_j\beta$, where g is the link function, herein
a logit function. We calculated a participation bias factor following the method suggested by Greenland [bias factor = $(S_{1a}*S_{0b})/(S_{0a}*S_{1b})$], where S_{1a} , S_{0a} , S_{1b} , and S_{0b} denote the probabilities of selection (i.e. full participation in the benzene study) for exposed cases, unexposed cases, exposed controls, and unexposed controls.[13] When the bias factor equals 1, there is no bias, when it is above or below 1 the true OR will be biased respectively upward or downward by the magnitude of this factor. Multiple regression models were used to analyze the relation between estimated exposures to benzene and ELF-MF. ### **RESULTS** ## Participation and sampling outcome Out of 108 cases and 194 controls eligible for inclusion, 46 cases and 60 controls (43% and 31%) agreed to take full part in the benzene side-study (Figure 1). In addition, the parents of 23 cases and 80 controls who refused the personal exposure assessment accepted the outdoor monitoring (partial participation = 21% and 41%). Altogether 1467 air samples were collected. A small percentage (2%) were lost during monitoring (22 samplers stolen, 2 sampler plates broken, 3 cartridges lost), transport (8 missing labels) or chemical analysis (2 cartridges broken on arrival at the laboratory; 1 sample lost due to equipment failure). Benzene measurements from the day-to-day variability sub-study (19% of the total) could not be used because only four control children accepted the 24-h sampling scheme, and were replaced by the calculated weekly averages. A further 20% of benzene measurements was removed from the data-set due to lack of compliance with the study protocol (indoor samples collected in place of the personal ones from children refusing to wear the sampler; time-or place-mismatch of personal and outdoor samples; "orphan" personal or outdoor samples; duplicate season-specific measurements; non-participants replaced with children ineligible for the benzene side-study]. For the same reasons, 107 out of 417 chemical determinations in urine (26%) were discarded. Three cases and 5 controls were excluded from one or more analyses due to lack of complete measurement sets in all seasonal series and, although 89% and 83% of full-participant cases and controls did adhere to all four seasonal surveys, only 37% and 43% of them had four repeated analyzable observations. ### Personal characteristics of the children The families of cases participating in full to the benzene study had been interviewed on average 1.3 years (SD 0.47) after the date of diagnosis, and the control-families 1.5 years (SD 0.46) after the corresponding reference date. The delay between diagnosis and the first series of benzene measurements was 2 years (SD 0.53) for both cases and controls. Cases and controls were comparable in terms of gender, age, and father's attained educational level (Table 1). A higher proportion of controls than cases had both parents smoking, and control-mothers were more educated than case-mothers. There were similar proportions of only children in the case and control groups, while firstborn children were more frequent among controls than cases. Early schooling (day-care attendance) was more common in cases than in controls. At the time of the benzene survey, most children were still living in the home occupied at birth or in the house they moved into after birth but before the date of diagnosis (cases 95%; controls 91%). ## Level, variability, and determinants of personal exposure to benzene The analyses of level, variability and determinants of personal exposure to benzene were based on 43 cases (39 ALL and 4 AML) and 56 controls, with 261 valid pairs of benzene concentrations in breathing zone and outdoor air (110 from cases and 151 from controls). A large proportion of these children (35%) had a single pair of concurrent measurements, unevenly distributed by season, with a disproportionally high number of summer samples (30 out of 35, all but one from a single centre). The distributions, overall and by season, of benzene concentrations in personal and outdoor air samples, and of cotinine, MA and S-PMA in urine are described in Table 2. Personal exposure to benzene was log-normally distributed (Shapiro-Wilk test = 0.938, p<0.001), and the mean benzene level over the individual yearly averages was 3 μ g/m³ (0.92 ppb). The distribution of benzene outdoor concentration was skewed to the left in all seasons and the yearly averages were log-normally distributed as well (Shapiro-Wilk test = 0.948, p = 0.001); the average yearly benzene level near the children's homes was $2.7 \,\mu\text{g/m}^3$ (0.83 ppb). Both outdoor benzene concentrations and personal exposure levels were higher in the cold seasons (autumn-winter) than in the warm ones (spring-summer). The European limit for benzene in air (5 μ g/m³) was exceeded by 5% of the yearly average outdoor concentrations, and by 8% of the yearly average levels in breathing zone air samples. A large proportion of autumn and winter measurements were above 5 $\mu g/m^3$ (35% and 25% outdoor; 26% and 30% of the personal exposure estimates). Cases and controls had similar levels of personal exposure to benzene: the leukaemia OR for a unit increase (1 μ g/m³) in personal benzene exposure was 0.93 (95% CI 0.77-1.13) adjusting for gender, age at the benzene survey (2-4; 4-6; 6-12 years), cotinine in urine (μ g/g creatinine), season, and province of residence (Turin; Milan; Florence - Rome; Catania - Palermo - Cagliari). A similar lack of association was found between the odd of disease and benzene concentration outside the children's homes [OR 0.94 (95% CI 0.80-1.09)], controlling for gender, age, smoking habits of the parents at the interview (non-smokers, mother or father smoking; both parents smoking), season, and province of residence. Further adjustment for birth order and age at first schooling had no material effect on the observed leukaemia-benzene relationship [personal exposure: OR 0.92 (95% CI 0.75-1.13); outdoor benzene: OR 0.95 (95% CI 0.81-1.13)]. As cases and controls had comparable levels of benzene exposure, we carried out the analyses illustrated in the forthcoming paragraphs on the whole data-set, although always controlling for caseness. Urinary cotinine concentration (µg/g of creatinine) was higher in children of smoking parents compared to children of non-smokers, and children with both parents smoking excreted a larger amount of cotinine than children with one parent smoking (Appendix Table A). Cotinine levels were higher in winter than in other seasons, and higher in children from central and southern Italy (Florence, Rome, Palermo, Catania, Cagliari) than in children from northern provinces (Turin and Milan). The high between- *vs* within-subject R² ratio is worth noting. Personal benzene exposure was strongly influenced by outdoor benzene concentrations (Table 3-A), and apparently not affected by gender or age; the season showed a modifying effect, with increasing levels of personal exposure during autumn and winter; the fraction of variability explained by the model was higher for the within-subject component than for the between-subject one. Exposure to second-hand tobacco smoke (estimated by cotinine excretion or by parental smoking habits) showed a trivial influence on personal exposure to benzene. The inclusion of urinary cotinine (µg/g creatinine) in the model described in Table 3-A, slightly decreased its goodness of fit [R^2 overall = 0.46; Wald χ^2 =189.49; R^2 within = 0.55; R^2 between = 0.35; β (cotinine) = 0.012; 95% CI = -0.003; 0.03)]; an alternative model, including smoking habits of the parents, did not perform any better [R^2 overall = 0.46; Wald χ^2 =216.44; R^2 within = 0.52; R^2 between = 0.39; β (one parent smoking) = 0.14; 95% CI = -0.02; 0.31; β (both parents smoking) = 0.17; 95% CI = -0.06; 0.39]. Children from central Italy (Florence and Rome) tended to have lower benzene concentrations in breathing zone air samples compared to residents in other provinces, all other things being equal (Table 3-A), possibly because of residual confounding from lack of samples collected in Rome other than in summer. We tried to verify this hypothesis by restricting the analyses to children with at least two series of measurements in different seasonal periods (cold and warm). The dataset reduced to 61 subjects (25 cases and 36 controls) and 220 pairs of personal-outdoor benzene measurements. Actually, children from Florence still showed (not significantly) lower levels of personal exposure to benzene (β = - 0.27; 95% CI = -0.56; 0.03; p =0.074) compared to children from Turin. In the restricted data-set, however, independent effects of both outdoor benzene and urinary cotinine levels on personal benzene exposure were observed (Table 3-B). ### Benzene intake and urinary excretion of benzene metabolites Ninety-eight children (43 cases and 55 controls) and 310 pairs of urine and breathing zone air measurements (138 from cases and 172 from controls) were available for the analyses of the urinary excretion of benzene metabolites (MA and S-PMA) in relation to personal exposure to benzene. Urinary concentrations of S-PMA (In μ g/g creatinine) were related to personal exposure to benzene (Table 4, Model 1). Youngest children (2-4 years at the benzene survey) excreted higher level of S-PMA compared to children aged 6-12 years, all other conditions being equal, and urinary concentration of S-PMA were higher in samples collected during the cold seasons compared to spring samples. The model, however, explained just 19% of the overall S-PMA variability. In an alternative model, including outdoor benzene concentrations and urinary cotinine in place of personal benzene exposure, we also observed an effect of the nicotine biomarker on S-PMA excretion (Table 4, Model 2). On the contrary, neither benzene
concentrations in breathing zone air samples, nor outdoor benzene concentrations or cotinine levels explained the intra- and inter-individual variability in urinary levels of MA, controlling for gender, age, season, area of residence, and caseness (data not shown). ### Bias due to differential participation Available for the analysis of participation bias were 66 cases (43 full-participant and 23 partial-participant) and 136 controls (56 and 80), with 652 measurements of outdoor benzene concentrations (135 and 175 from full-participant cases and controls; 81 and 261 from partial-participant cases and controls). Benzene concentrations near the homes of full-participant controls were significantly lower than those in proximity of partial-participants' dwellings (OR = 0.88; 95% CI 0.80-0.97), adjusting for gender, age, season and place of residence, while there was no difference in ambient benzene levels between participant and non-participant cases (OR = 0.95; 95% CI 0.82-1.09). As participation in the study was also associated with the case-control status, assuming a causal association between exposure and disease, a selection bias might ensue. However, as parents of more exposed controls were less willing to accept to be interviewed, an upward distortion would be expected, which is at odds with the apparent lack of association between personal benzene exposure and leukaemia risk in the current study. To the aim of the current analysis, personal exposure to benzene was dichotomized around the median (3.25 μ g/m³), the 75th percentile (4.34 μ g/m³) or 5 μ g/m³ (the current limit for airborne benzene in Europe). The amount and direction of bias were found to depend on the cut-point chosen (Appendix Table B), whereas no bias is expected when the exposure is categorized around the median (bias factor = 1.03), and biases in the opposite directions are predicted using cut-off at p75 and at 5 μ g/m³ (0.64 and 1.42, respectively). #### Relationship between exposures to benzene and ELF-MF Children with benzene and ELF-MF measurements made at the same house qualified for inclusion in the analysis of the relationship between estimated exposures to these agents. As only 35 cases and 46 controls met such criterion when benzene concentrations in breathing zone air samples were used as exposure indicator, we performed the analysis on 48 cases and 77 controls with place-comparable pairs of average yearly outdoor benzene concentration ($\mu g/m^3$) and 48 h TWAs of ELF-MF level in the child's bedroom (In μT). There was a positive association between estimated exposures to ELF-MF (dependent variable) and benzene (β = 0.177; 95% CI 0.06-0.29; p = 0.002); the multivariable regression model (including gender, age, province of residence, caseness, and participation in the benzene pilot study as covariates) explained 16% of the variability in the dependent variable [F (10, 114 df) = 2.13; p> F = 0.0271]. A steeper increase in ELF-MF level per unit increase in outdoor benzene concentration (β = 0.520; 95% CI 0.09-0.95; p = 0.019) was seen among the 81 children fully participating in the benzene pilot-study compared to the 44 partial-participants (Appendix Table C). Similar results, with a more accentuated increase in indoor magnetic induction level per unit increase in outdoor benzene concentration [β = 0.272; 95% CI = 0.09-0.45; p(t) = 0.003; R² = 0.19], were observed in the restricted data-set of 86 children with \geq 2 weekly samplings in alternate seasons. #### **DISCUSSION** We have carried out a pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated individual measurements made on average two years after diagnosis. The pilot study included side-investigations aimed at evaluating the performance of two biological indicators of benzene exposure in children, at estimating amount and direction of a possible participation bias, and at assessing the relation between estimated exposures to benzene and ELF magnetic fields. Due to the relatively low incidence of childhood cancers (10-15 for 100,000 person-years in the 0-14 year range in most industrialized countries), the case-control approach is the design of choice for analytical epidemiologic studies about potential risk factors for these diseases. Such a study design, however, is inherently prone to measurement errors stemming from the retrospective reconstruction of the exposures of interest, and to differential participation leading to control samples not representative of the study base. Therefore, findings from observational epidemiologic studies of postulated determinants for childhood malignancies are often inconsistent and always require a cautious and thoughtful interpretation.[14] Although based on small numbers, some of the findings from the current study have a certain factual and methodological interest. Repeated samplings of breathing and outdoor air are indeed needed to account for the seasonal variability in environmental benzene levels.[15-16] On average, children participating in the current study appear to experience mean yearly levels of personal exposure to benzene not exceeding the European guidelines (although 8% percent of the yearly mean levels were above 5 μ g/m³). What we *a priori* considered the main sources of benzene exposure for children (ambient benzene levels and second-hand tobacco smoke) explained no more than half of the overall variability in personal exposure, which indicates the need to identify other sources of exposure particularly relevant, perhaps, during the cold seasons. In fact, in autumn-winter compared to spring-summer, we observed higher levels of personal exposure to benzene, of urinary cotinine and of S-PMA excretion, all other things being equal. These findings might be due to the lower ventilation rates in homes and schools during the cold seasons, to winter-specific sources of indoor benzene concentrations not considered in the current survey (e.g. fireplaces or other combustion sources), and/or to the seasonal variability in daily patterns of time spent in different micro-environments (e.g. within cars or buses).[17] Some case-control studies have suggested an association between exposure to traffic density and childhood leukaemia;[18-21] however, negative findings have also been reported.[22-25] Positive associations between incidence of ALL in children and residential proximity to petrol stations were observed in three case—control studies.[23, 26-27] An increased risk of childhood leukaemia in relation to estimated exposure to benzene was observed in a small Italian study,[28] but not in a much larger case-control study carried out in Denmark and based on a sophisticated and validated exposure modelling.[29] To our knowledge there is no previous study of childhood leukaemia and measured personal benzene exposure. Moreover, as only children aged 0 to 10 years at diagnosis were eligible for the SETIL study, the large majority of cases included in the current investigation were pre-B ALL. Cases and controls did not differ in terms of exposure to benzene, estimated either by benzene level in personal air samples or through outdoor benzene concentration, but the interpretation of this finding is hampered by the retrospective exposure assessment and the low statistical power of this preliminary investigation. That notwithstanding, due to the design based on repeated individual observations, the risk estimates have quite narrow confidence intervals. Thus the findings from this pilot study, in accordance with the limited evidence for an association between exposure to benzene and ALL,[3, 5] might also suggest that the levels of benzene exposure experienced by children living in Italian towns do not entail a detectable increase in the risk of ALL. Current perspectives on the causes of childhood ALL increasingly point towards an etiologic role of altered patterns of infections and related immune stimulation during the first years of life, and one piece of supporting evidence is the consistent observation of an inverse association between ALL risk and day-care attendance.[30] Studies of childhood ALL and birth order, on the other hand, have provided inconsistent result.[31] Neither age at first schooling, nor birth order confounded the relation between childhood leukaemia and indicators of benzene exposure in the current study. S-PMA concentration measured in repeated weekly samples of the last micturition before sleep was found to reflect personal exposure to benzene, although the available covariates explained a small fraction of the within- and between-subject variability of this benzene metabolite. This is a quite surprising result, considering that S-PMA is believed to represent less than 1% of urinary benzene metabolites for exposures to benzene at air concentrations between 0.1 and 10 ppm.[32] Benzene exposure proved not able to explain the variability of MA urinary excretion observed in our children, consistent with findings from a previous Italian study.[33] The low statistical power of the study, the low level of benzene exposure, and the lack of adjustment for the confounding effect of dietary intake of sorbic acid (a common food additive), may explain this finding.[34] Full-participation rates were low, in line with a general tendency to decreasing participation rates, especially in epidemiological studies requiring adherence to complex measurement protocols.[14, 35] That notwithstanding, the outdoor monitoring was accepted by a fairly satisfactory proportions of families (64% and 72% of eligible cases and controls). This is an encouraging result, given the strong correlation between personal benzene exposure and ambient benzene level observed in the current study. We observed a differential participation bias, which underscores the need to plan parallel bias analyses in any case-control study.[36] The dependence of the participation
bias factor on the cutpoint chosen to dichotomize the exposure variable is of methodological interest. The positive association between the 48 h TWA of ELF-MF induction in the child's bedroom and the average yearly concentrations of outdoor benzene will need consideration in the interpretation of findings from the analyses of childhood leukaemia risk in relation to 50 Hz MF in the SETIL case-control study. Incidental failures during sample collection, transport or chemical analysis accounted for a negligible proportion of lost air or urine samples. However, substantial percentages of chemical measurements could not be included in current analyses because of misunderstanding of the sampling protocol. The day-to-day variability sub-study was clearly too demanding to be acceptable. In conclusion, the current pilot study suggests that epidemiologic studies of childhood leukaemia risk and measurement-based estimates of exposure to benzene are challenging but logistically feasible (provided that the study protocol specifies every single sampling detail and nothing is considered so obvious as to be omitted). Such an exposure assessment method could be considered by epidemiologists willing to involve in the "genome - exposome" approach to gain further insight into the relationship between benzene exposure and childhood leukaemia risk, with priority given to AML.[2, 37-39] Due to the low incidence rates of AML in children, however, international multi-centre studies are needed to address this topic. #### **ACKNOWLEDGEMENTS** The authors acknowledge the relevant contributions provided by Dr. Vincenzo Cocheo, Dr. Sergio Ghittori and Dr. Luciano Maestri (Fondazione Salvatore Maugeri) whose untimely death prevented their seeing the results of this study. **BMJ Open** The authors thank Prof. Lorenzo Gafà for his strong support to the carrying out of the research in Sicily, Caterina Boaretto (Fondazione Salvatore Maugeri) for her skilful collaboration in the analysis and quality control of the air samples, along with Patrizia Legittimo, Anna Maria Badiali, Cristina Fondelli, Alessandra Benvenuti (Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence); Paolo Guidotti (ITI, Florence); Giuliana Buscema (Italian Cancer League, Ragusa Section), Simona Trapani, Rosalia Maria Valenti (University of Palermo), Vanda Macerata (CPO Piemonte) for data collection, recording, and quality control, along with Dr. Susan Richman for the language revision. ## **FUNDING** The current investigation was co-funded by the Italian Ministry of Health (passive samplers and chemical determinations), the Italian Association for Research on Cancer along with the Ministry of University and Research (personnel, travel, consumables, and computing), and the Piedmont Region "Ricerca Sanitaria Finalizzata" (statistical analyses). #### **COMPETING INTERESTS** None. ### **CONTRIBUTORSHIP** Susanna Lagorio designed the study, planned the statistical analyses, and drafted the manuscript. Daniela Ferrante carried out the statistical analyses. Alessandra Ranucci was in charge of the data management, quality control and descriptive statical analyses. Paolo Sacco and Sara Negri collaborated to the study design, and were responsible for the chemical analyses. Roberto Rondelli, as manager of the AIEOP childhood leukaemia registry, performed the case ascertainment. Santina Cannizzaro, Valeria Torregrossa, Pierluigi Cocco, Francesco Forastiere, Lucia Miligi, Luigi Bisanti, and Corrado Magnani were the principal investigators of the local centres collaborating to the benzene pilot study in the framework of the SETIL multicentre case-control study. All the authors critically revised the early drafts, collaborated to the discussion of the study findings, and approved the final version of the manuscript. #### **DATA SHARING** Additional explanatory material is available to everyone on request. The dataset is available to fellow researchers for further joint analyses, on request to the corresponding author, and pending approval by the co-authors. #### **REFERENCES** - Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for benzene. Atlanta, GA U.S. Department of Health and Human Services, Public Health Service 1997. - 2. Smith MT, Zhang L, McHale CM, et al. Benzene, the exposome and future investigations of leukemia etiology. *Chem Biol Interact* 2011;192:155–59. - International Agency for Research on Cancer (IARC). A review of human carcinogens. F. Chemical agents and related occupations. Lyon (France): IARC Press, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 100, 2012. - 4. Schnatter AR, Glass DC, Tang G, et al. Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. *J Natl Cancer Inst* 2012;104:1724-1737. - Environmental Protection Agency (EPA). Carcinogenic effects of benzene: an update. Washington, DC: National Center for Environmental Health, Office of Research and Development, EPA/600/P-97/001F, 10 April 1998. - 6. World Health Organization (WHO). Benzene. In: Air quality guidelines for Europe, second edition. Copenhagen: WHO Regional Publications, European Series, No. 91 2000. - 7. World Health Organization (WHO). Exposure to benzene: a major public health concern. Geneva: WHO Document Production Services 2010. - 8. Eden T. Aetiology of childhood leukemia. *Cancer Treat Rev* 2010;3:286–97. - 9. Wiemels J. Perspectives on the causes of childhood leukemia. *Chem Biol Interact* 2012;196:59-67. - 10. Pyatt D, Hays S. A review of the potential association between childhood leukemia and benzene. *Chem Biol Interact* 2010;184:151-64. - 11. Smith MT. Advances in understanding benzene health effects and susceptibility. *Annu Rev*Public Health 2010;31:133–48. - 12. Cocheo C, Boaretto C, Pagani D, et al. Field evaluation of thermal and chemical desorption BTEX radial diffusive sampler Radiello® compared with active (pumped) samplers for ambient air measurements. *J Environ Monit* 2009;11: 297-306. - 13. Greenland S. Basic methods for sensitivity analysis and external adjustment. In: Rothman KJ, Greenland S (Eds). *Modern Epidemiology*. 2nd ed. Philadelphia: Lippincott, Williams & Wilkins: 1998:343–58. - 14. Linet MS, Wacholder S, Hoar Zahm S. Interpreting epidemiologic research: lessons from studies of childhood cancer. *Pediatrics* 2003;112:218-32. - 15. Fuselli S, De Felice M, Morlino R, et al. A three year study on 14 VOCs at one site in Rome: levels, seasonal variations, indoor/outdoor ratio and temporal trends. *Int J Environ Res Public Health* 2010;7:3792-803. - 16. Regione Toscana. Progetto INDOOR: studio sui comfort e sugli inquinanti fisici e chimici nelle scuole (2004-2006). Firenze: Regione Toscana, Rapporti di Ricerca 371.7109455 2011; http://www.regione.toscana.it/regione/export/RT/sito- RT/Contenuti/sezioni/salute/visualizza asset.html 128139851.html (last accessed 30 July 2012). - 17. Fondelli MC, Bavazzano P, Grechi D, et al. Benzene exposure in a sample of population residing in a district of Florence. *Sci Tot Environ* 2008;392:41-9. - 18. Savitz D, Feingold L. Association of childhood cancer with residential traffic density, *Scand J Work Environ Health* 1989;15:360–3. - Feychting M, Svensson D, Ahlbom A. Exposure to motor vehicle exhaust and childhood cancer. Scand J Work Environ Health 1998;24:8-11. - 20. Weng HH, Tsai SS, Chen CC, et al. Childhood leukemia development and correlation with traffic air pollution in Taiwan using nitrogen dioxide as an air pollutant marker. *J Toxicol Environ Health A* 2008;71:434-8. - 21. Amigou A, Sermage-Faure C, Orsi L, et al. Road traffic and childhood leukemia: the ESCALE study (SFCE). *Environ Health Perspect* 2011;119:566–72. - 22. Langholz B, Ebi K, Thomas D, Peters J, et al. Traffic density and the risk of childhood leukemia in a Los Angeles case—control study. *Ann Epidemiol* 2002: 12: 482–7. - 23. Steffen C, Auclerc MF, Auvrignon A, et al. Acute childhood leukemia and environmental exposure to potential sources of benzene and other hydrocarbons: a case-control study. **Occup Environ Med 2004;61:773–8.** - 24. Reynolds P, Von Behren J, Gunier RB, et al. Residential exposure to traffic in California and childhood cancer. *Epidemiology* 2004;15: 6–12. - 25. Von Behren J, Reynolds P, Gunier RB, et al. Residential traffic density and childhood leukemia risk. *Cancer Epidemiol Biomarkers Prev* 2008;17:2298–301. - 26. Brosselin P, Rudant J, Orsi L, et al. Acute childhood leukemia and residence next to petrol stations and automotive repair garages: the ESCALE study (SFCE). *Occup Environ Med* 2009;66:598–606. - 27. Weng HH, Tsai SS, Chiu HF, et al. Childhood leukemia and traffic air pollution in Taiwan: petrol station density as an indicator. *J Toxicol Environ Health A* 2009;72:83-7. - 28. Crosignani P, Tittarelli A, Borgini A, et al. Childhood leukemia and road traffic: a population-based case–control study. *Int J Cancer* 2004;108:596–9. - 29. Raaschou-Nielsen O, Hertel O, Thomsen BL, et al. Air pollution from traffic at the residence of children with cancer. *Am J Epidemiol* 2001;153:433–43. - 30. Urayama KY, Buffler PA, Gallagher ER, et al. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. *Int J Epidemiol* 2010;39:718-32. - 31. Von Behren J, Spector LG, Mueller BA, et al. Birth order and risk of childhood cancer: a pooled analysis from five U.S. studies. *Int J Cancer* 2011;128:2709-16. - 32. Kim S, Vermeulen R, Waidyanatha S, et al. Modeling human metabolism of benzene following occupational and environmental exposures. *Cancer Epidemiol Biomarkers Prev* 2006;15:2246–52. - 33. Protano C, Guidotti M, Manini P, et al. Benzene exposure in childhood: role of living environments
and assessment of available tools. *Environ Int* 2010;36:779–87. - 34. Negri S, Bono R, Maestri L, et al. High-pressure liquid chromatographic—mass spectrometric determination of sorbic acid in urine: verification of formation of *trans,trans*-muconic acid. *Chem Biol Interact* 2005;153-154:243-6. - 35. Hatch EE, Kleinerman RA, Linet MS, et al. Do confounding or selection factors of residential wiring codes and magnetic fields distort findings of electromagnetic fields studies? Epidemiology 2000;11:189–198. - 36. Lash Tl, Fox MF, Fink AK. Applying quantitative bias analysis to epidemiologic data. Springer Science + Business Media, LLC 2009. - 37. Wild CP. Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. *Cancer Epidemiol Biomarkers Prev* 2005;14:1847–50. - 38. Rappaport SM, Smith MT. Environment and disease risks. Science 2010;330:460–461. - 39. Wild CP. The exposome: from concept to utility. Int J Epidemiol 2012;41:24–32. Table 1. Children included in the pilot study by selected characteristics | | | Cases | | Cont | Controls | | | |------------------------|---|-------|----|--|----------------|--|--| | | | N | % | N | % | | | | Condor | Female | 25 | 58 | 30 | 54 | | | | Gender | Male | 18 | 42 | 26 | 46 | | | | | [2,4) years | 5 | 12 | 9 | 16 | | | | Age at the survey | [4,6) years | 21 | 49 | 16 | 29 | | | | | [6,12] years | 17 | 40 | K N 8 30 2 26 2 9 9 16 0 31 6 9 9 13 7 5 9 6 9 3 7 18 9 11 7 0 - 1 0 24 4 10 7 - - - 4 17 5 26 1 13 - - 3 24 5 16 3 9 3 30 - 1 | 55 | | | | | Turin | 7 | 16 | 9 | 16 | | | | | Milan | 8 | 19 | 13 | 23 | | | | | Florence | 3 | 7 | 5 | 9 | | | | Residence* | Rome | 14 | 33 | 15 | 27 | | | | Cata
Paler
Cagli | Catania | 3 | 7 | 5 | 9 | | | | | Palermo | 4 | 9 | | 11 | | | | | Cagliari | 4 | 9 | | 5 | | | | | None | 20 | 47 | | 48 | | | | 6 | One | 16 | 37 | | 32 | | | | Parent smoking§ | Both | 4 | 9 | | 20 | | | | | Missing | 3 | 7 | | _ | | | | | No qualification | - | - | | 2 | | | | | Primary school | 17 | 40 | | 38 | | | | Father's | High school | 17 | 40 | | 43 | | | | education [§] | University degree | 6 | 14 | | 18 | | | | | Missing | 3 | 7 | _ | _ | | | | | No qualification | - | | _ | _ | | | | | Primary school | 19 | 44 | 17 | 30 | | | | Mother's | High school | 15 | 35 | | 46 | | | | education [§] | University degree | 9 | 21 | | 23 | | | | | Missing | - | | - | - | | | | | Only child | 10 | 23 | 12 | 21 | | | | Birth order§ | First born | 10 | 23 | | 36 | | | | | Second born or higher birth order | 23 | 53 | | 43 | | | | | No schooling yet | 15 | 35 | | 29 | | | | Age at first | <3 years (crèche) | 14 | 33 | | 16 | | | | schooling§ | [3,6) years (preschool) | 14 | 33 | | 54 | | | | | [6-7] years (primary school) | 0 | | | 2 | | | | | Occupied since birth | 28 | 65 | | <u>-</u>
70 | | | | Home at the time | Moved into after birth & before diagnosis | 13 | 30 | 12 | 21 | | | | of the benzene | Moved into after diagnosis & before interview | 1 | 2 | 5 | 9 | | | | survey [^] | Moved into after interview | 1 | 2 | - | _ | | | | | THO TEA INTO AFTER INTERVIEW | | | | | | | ^{*}At the time of diagnosis or the corresponding reference date for controls; [§]Information reported at the interview; [^]The ELF magnetic fields measurements, if the parents agreed, were made at the time of the interview. Table 2. Benzene concentration in personal and outdoor air samples, and urine level of cotinine and benzene metabolites by season and overall | | Obs (#) | Maan | SD | G-mean | G-SD | Min | | Percentiles | | Max | |---|---------|--------|--------|--------|------|--------|-------|-------------|--------|---------| | Benzene in personal air samples (µg/m³) | Obs (#) | Mean | 30 | G-mean | u-3D | IVIIII | p25 | p50 | p75 | IVIAX | | Spring | 57 | 2.51 | 1.89 | 2.10 | 1.75 | 0.60 | 1.50 | 1.82 | 3.11 | 11.12 | | Summer | 86 | 2.26 | 1.45 | 1.90 | 1.82 | 0.47 | 1.25 | 1.85 | 3.10 | 8.13 | | Autumn | 62 | 4.31 | 2.60 | 3.73 | 1.57 | 0.92 | 2.939 | 3.70 | 5.17 | 18.47 | | Winter | 56 | 4.04 | 1.78 | 3.67 | 1.73 | 1.55 | 2.34 | 4.00 | 5.24 | 9.03 | | Individual yearly averages | 99 | 3.00 | 1.45 | 2.66 | 1.67 | 0.75 | 2.05 | 2.90 | 3.83 | 9.00 | | Benzene in outdoor air samples (μg/m³) | | | | | | | | | | | | Spring | 57 | 2.29 | 1.30 | 1.93 | 1.84 | 0.48 | 1.20 | 1.91 | 3.15 | 5.67 | | Summer | 86 | 1.94 | 1.20 | 1.65 | 1.75 | 0.39 | 1.12 | 1.58 | 2.28 | 6.92 | | Autumn | 62 | 3.99 | 2.58 | 3.05 | 1.92 | 0.08 | 1.93 | 3.42 | 5.63 | 11.18 | | Winter | 56 | 3.80 | 1.86 | 3.25 | 2.35 | 0.15 | 2.40 | 3.66 | 5.20 | 8.31 | | Individual yearly averages | 99 | 2.70 | 1.41 | 2.33 | 1.78 | 0.27 | 1.59 | 2.37 | 3.63 | 6.92 | | Cotinine (µg/ g creatinine) | | | | | | | | | | | | Spring | 78 | 3.92 | 7.04 | 1.91 | 3.26 | 0.05 | 1.00 | 1.94 | 3.50 | 49.0 | | Summer | 78 | 3.20 | 5.52 | 1.50 | 3.59 | 0.09 | 0.82 | 1.68 | 3.71 | 41.4 | | Autumn | 76 | 4.54 | 8.51 | 1.92 | 3.92 | 0.05 | 1.20 | 1.93 | 4.30 | 48.7 | | Winter | 74 | 4.36 | 7.38 | 2.32 | 3.01 | 0.10 | 1.20 | 2.30 | 4.80 | 53.5 | | Individual yearly averages | 98 | 3.73 | 5.99 | 2.14 | 2.67 | 0.30 | 1.08 | 2.09 | 3.58 | 41.9 | | MA (μg/g creatinine) | | | | | | | | | | | | Spring | 81 | 104.22 | 69.28 | 87.43 | 1.79 | 17.00 | 60.27 | 82.00 | 126.99 | 349.00 | | Summer | 79 | 140.40 | 226.73 | 92.30 | 2.16 | 13.33 | 56.54 | 83.00 | 131.76 | 1680.00 | | Autumn | 76 | 128.24 | 124.04 | 99.57 | 1.94 | 30.21 | 60.16 | 102.48 | 147.21 | 893.04 | | Winter | 74 | 119.09 | 100.15 | 95.30 | 1.86 | 26.00 | 65.00 | 86.00 | 129.00 | 591.00 | | Individual yearly averages | 98 | 116.65 | 84.89 | 101.06 | 1.62 | 46.42 | 73.33 | 92.66 | 122.50 | 593.42 | | S-PMA (μg/g creatinine) | | | | | | | | | | | | Spring | 81 | 1.13 | 0.60 | 1.00 | 1.62 | 0.21 | 0.80 | 1.00 | 1.30 | 3.70 | | Summer | 79 | 1.12 | 0.54 | 1.02 | 1.54 | 0.41 | 0.72 | 1.00 | 1.39 | 3.30 | | Autumn | 76 | 1.53 | 0.93 | 1.33 | 1.67 | 0.49 | 0.97 | 1.29 | 1.84 | 5.80 | | Winter | 74 | 1.37 | 0.60 | 1.23 | 1.64 | 0.15 | 1.00 | 1.20 | 1.60 | 3.40 | | Individual yearly averages | 98 | 1.28 | 0.50 | 1.20 | 1.43 | 0.56 | 0.94 | 1.20 | 1.46 | 2.97 | Confidential - to be submitted for publication Table 3. Personal exposure to benzene ($\ln \mu g/m^3$) by outdoor benzene concentration, cotinine, gender, age, season, province of residence, and caseness | A. Whole data-set (261 observation, 9 | 99 children) | | | |---------------------------------------|------------------|-------------|---------| | | β | 95% CI (β) | p(Z) | | Outdoor benzene(µg/m³) | 0.151 | 0.12; 0.19 | <0.001 | | Gender (male vs female) | -0.052 | -0.21; 0.11 | 0.522 | | Age (at the benzene survey) | Reference [6-12] |] years | | | [2-4) years | 0.027 | -0.20; 0.25 | 0.814 | | [4-6) years | -0.147 | -0.32; 0.03 | 0.098 | | Season | Reference Spring | g | | | Summer | -0.027 | -0.18; 0.12 | 0.717 | | Autumn | 0.317 | 0.16; 0.48 | < 0.001 | | Winter | 0.330 | 0.17; 0.49 | < 0.001 | | Residence | Reference = Turi | in | | | Milan | -0.038 | -0.28; 0.20 | 0.759 | | Florence - Rome | -0.208 | -0.45; 0.03 | 0.091 | | Catania - Palermo - Cagliari | -0.086 | -0.31; 0.13 | 0.443 | | Case vs control | -0.039 | -0.19; 0.12 | 0.623 | R^2 overall =0.4617 (within = 0.5364; between = 0.3603); Wald χ^2 =234.0; p<0.0001 ## B. Restricted data-set (≥2 repeats; 175 observations, 61 children) | | β | SE (β) | p(Z) | |---|----------------------------------|------------------|--------| | Outdoor benzene(μg/m³) | 0.123 | 0.020 | <0.001 | | Cotinine (µg/g creatinine) | 0.023 | 0.011 | 0.039 | | Gender (male vs female) | -0.057 | 0.116 | 0.623 | | Age (at the benzene survey) | Reference [6-12] y | rears | | | [2-4) years | 0.050 | 0.161 | 0.757 | | [4-6) years | -0.199 | 0.121 | 0.100 | | Season | Reference = Spring | 3 | | | Summer | -0.055 | 0.081 | 0.494 | | Autumn | 0.382 | 0.087 | <0.001 | | Winter | 0.351 | 0.086 | <0.001 | | Residence | Reference = Turin | | | | Milan | 0.038 | 0.155 | 0.807 | | Florence - Rome | -0.323 | 0.195 | 0.099 | | Catania - Palermo - Cagliari | -0.00001 | 0.138 | 1.000 | | Case vs control | -0.073 | 0.107 | 0.498 | | R ² overall =0.4858 (within = 0.5564; betw | reen = 0.3544); Wald χ^2 =1 | .71.89; p<0.0001 | | Table 4. Urinary excretion of S-PMA (In μ g/g creatinine) by personal benzene exposure (model 1) or outdoor benzene concentration plus urinary cotinine (model 2), controlling for gender, age, season, province of residence, and caseness | Model 1 (310 observations, 98 children) | β | 95% CI (β) | p(Z) | |---|---|---|--| | Personal benzene exposure (μg/m³) | 0.031 | 0.004; 0.06 | 0.024 | | Gender (male vs female) | -0.027 | -0.16; 0.11 | 0.695 | | Age (at the benzene survey) | Reference | [6-12] years | | | [2-4) years | 0.395 | 0.22; 0.57 | < 0.001 | | [4-6) years | -0.011 | -0.16; 0.14 | 0.890 | | Season |
Reference : | Spring | | | Summer | 0.043 | -0.09; 0.17 | 0.514 | | Autumn | 0.250 | 0.11; 0.38 | <0.001 | | Winter | 0.156 | 0.01; 0.30 | 0.033 | | Residence | Reference ⁻ | Turin | | | Milan | 0.007 | -0.21; 0.23 | 0.949 | | Florence - Rome | 0.013 | -0.18; 0.21 | 0.898 | | Catania - Palermo - Cagliari | 0.068 | -0.14; 0.27 | 0.514 | | Case vs control | 0.053 | 0.647 | 0.415 | | R ² overall =0.1894 (within = 0.1263; between = 0.217 | 4); Wald $\chi^2 = 58.9$ | 7; p <0.0001 | | | | | | | | Model 2 (214 observations, 98 children) | β | 95% CI (β) | p(Z) | | Outdoor benzene concentration (μg/m³) | 0.009 | -0.02; 0.04 | 0.605 | | Cotinine (µg/g creatinine) | 0.014 | 0.001; 0.03 | | | | 0.014 | • | 0.040 | | Gender (male vs female) | -0.012 | -0.16; 0.14 | 0.040 | | Gender (male vs female) Age (at the benzene survey) | -0.012 | -0.16; 0.14
[6-12] years | | | · · · · · · · · · · · · · · · · · · · | -0.012 | | | | Age (at the benzene survey) | -0.012
Reference | [6-12] years | 0.875 | | Age (at the benzene survey) [2-4) years | -0.012
Reference
0.308 | [6-12] years
0.08; 0.54
-0.11; 0.22 | 0.875 | | Age (at the benzene survey) [2-4) years [4-6) years | -0.012
Reference
0.308
0.055 | [6-12] years
0.08; 0.54
-0.11; 0.22 | 0.875 | | Age (at the benzene survey) [2-4) years [4-6) years Season | -0.012 Reference 0.308 0.055 Reference | [6-12] years 0.08; 0.54 -0.11; 0.22 Spring | 0.875
0.008
0.516 | | Age (at the benzene survey) [2-4) years [4-6) years Season Summer | -0.012 Reference 0.308 0.055 Reference 9 -0.040 | [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 | 0.875
0.008
0.516 | | Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn | -0.012 Reference 0.308 0.055 Reference 9 -0.040 0.200 | (6-12) years
0.08; 0.54
-0.11; 0.22
Spring
-0.18; 0.10
0.04; 0.36
-0.07; 0.24 | 0.875
0.008
0.516
0.582
0.012 | | Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter | -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 | (6-12) years
0.08; 0.54
-0.11; 0.22
Spring
-0.18; 0.10
0.04; 0.36
-0.07; 0.24 | 0.875
0.008
0.516
0.582
0.012 | | Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter Residence | -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 Reference | [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 Turin | 0.875
0.008
0.516
0.582
0.012
0.305 | | Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter Residence Milan | -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 Reference -0.053 | [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 Turin -0.28; 0.18 | 0.875
0.008
0.516
0.582
0.012
0.305
0.657 | | Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter Residence Milan Florence - Rome | -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 Reference -0.053 0.048 | [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 Turin -0.28; 0.18 -0.18; 0.28 | 0.875
0.008
0.516
0.582
0.012
0.305
0.657
0.687 | ## Exposure to benzene and childhood leukaemia: a pilot case-control study Susanna Lagorio¹, Daniela Ferrante², Alessandra Ranucci², Sara Negri³, Paolo Sacco³, Roberto Rondelli⁴, Santina Cannizzaro⁵, Maria Valeria Torregrossa⁶, Pierluigi Cocco⁷, Francesco Forastiere⁸, Lucia Miligi⁹, Luigi Bisanti¹⁰, Corrado Magnani² ## **Corresponding Author** Dr. Susanna Lagorio (MD, Senior Scientist) National Centre of Epidemiology, Surveillance and Health Promotion National Institute of Health Viale Regina Elena, 299 - 00161 Rome (Italy) Tel. +390649904304; Fax +390649904305 e-mail susanna.lagorio@iss.it **Keywords**: acute lymphoblastic leukaemia, benzene, extremely low frequency magnetic fields (ELF-MF), biomarkers, children, participation bias, confounding, epidemiologic methods. Word count: 45524654 ¹National Centre of Epidemiology, National Institute of Health, Rome, Italy ²Unit of Medical Statistics and Epidemiology, CPO Piemonte and University "Amedeo Avogadro" of Piemonte Orientale; Alessandria, Novara and Vercelli, Italy ³Fondazione Salvatore Maugeri, Centro Ricerche Ambientali; Padova and Pavia, Italy ⁴Italian Association of Paediatric Haematology and Oncology (AIEOP), Operation Office, Sant'Orsola Malpighi Hospital; Bologna, Italy ⁵Italian Cancer League, Ragusa Section; Ragusa Ibla, Italy ⁶Department of Sciences for Health Promotion, University of Palermo; Palermo, Italy ⁷Department of Public Health, Occupational Health Section, University of Cagliari; Cagliari, Italy ⁸Department of Epidemiology, Lazio Regional Health Service; Rome, Italy ⁹Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute; Florence, Italy ¹⁰Epidemiology Unit, Milan Local Health Agency; Milan, Italy #### **ABSTRACT** #### **Objectives** *Main purpose*: to assess evaluate the feasibility of a measurement-based assessment of personal benzene exposure in case-control studies of paediatric cancer. Additional aims: to identify the main-sources of exposure variability in personal exposure; to evaluate assess the performance of two benzene biomarkers; to verify the occurrence of participation bias; to check whether exposures to benzene and to 50 Hz magnetic fields were correlated, and might exert reciprocal confounding effects. #### Design Pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine. #### **Participants** 108 cases and 194 controls were eligible for inclusion. Full participation obtained from 46 cases and 60 controls, with low dropout rates before 4 repeats (11% and 17%); additional 23 cases and 80 controls allowed collection of outdoor air samples only. ## Results <u>Full-participation was obtained from 46 cases and 60 controls, with low dropout rates before 4 repeats (11% and 17%); additional 23 cases and 80 controls allowed collection of outdoor air samples only.</u> The average benzene concentration in personal and outdoor air samples was 3 $\mu g/m^3$ (SD 1.45) and 2.7 $\mu g/m^3$ (SD 1.41), respectively. Personal exposure was strongly influenced by outdoor benzene concentrations, higher in the cold seasons than in warm seasons, and not affected by gender, age, area of residence, or caseness. Urinary excretion of S-PMA and personal benzene exposure were well correlated. Outdoor benzene levels were lower among participant controls compared to non-participants, but did not differ between participant and non-participant cases; the direction of the bias was found to depend on the cut-point chosen to distinguish exposed and unexposed. Exposures to benzene and ELF-MF were positively correlated. #### **Conclusions** Repeated individual measurements are needed to account for the seasonal variability in benzene exposure, and have the additional advantage of increasing the study power. Measurement-based assessment of benzene exposure in studies of paediatric cancerchildhood leukemia appear feasible, although financially and logistically demanding, appear feasible and acceptable to children and their parents. **Formatted:** Justified, Space After: 6 pt, Line spacing: 1.5 lines #### **Article focus** - Benzene is an established causative factor forcause of acute non lymphocytic leukaemia (AnLL), and there is limited evidence limited evidence for an association between exposure to this agent and other hematologic neoplasms including acute lymphocytic leukaemia. Exposure to benzene would increase the risk of leukaemia at relatively high levels of lifetime environmental exposure (≥120 ppb). While it seems unlikely that benzene is a major cause of leukaemia in the general population, children may represent a subpopulation with increased susceptibility. Available Epidemiologic studies of benzene and childhood leukemia have provided inconsistent results, possibly due to the use of surrogate exposure proxies, and lack of analyses by leukaemia subtype. To get further insights on this topic, epidemiological studies based on objective estimates of environmental exposure to benzene have been recommended. - our pilot study was aimed at evaluating the logistic feasibility of an assessment of personal benzene exposure based on repeated individual-measurements within in a case-control study of childhood leukemia. A few methodological issues were also addressed (putative determinants of Additional aims were: (i) to estimate the level of benzene exposure in children and assess if, and how much, exposure variability; was affected by a number of putative determinants; (ii) to evaluate the performance of urinary levels of t-t-muconic acid (MA) and sulpho-phenylmercapturic acid (S-PMA) as benzene biomarkers in children; (iii) to assess the presence of participation bias (which occurs when adhesion to the study protocol is associated with both the level of exposure and the presence / absence of the disease); possible reciprocal confounding effects of (iv) to determine whether exposures to benzene and to 50 Hz magnetic fields (ELF-MF)ELF-MF) were correlated, so that they could exert reciprocal confounding effects in the analyses of their relationship with childhood leukemia. ## **Key messages** Eligibility Eligible for inclusion was restricted towere 108 cases and 194 matched controls, aged 2 to 12 years at the time of the survey. Full participation rates were low, (cases 43%, controls 31%), but the outdoor monitoring was accepted by additional 2164% of cases and 4172% of controls accepted the outdoor monitoring. Adherence of full participants to the scheduled four seasonal repeats was very satisfactory
(cases 89%, controls 83%). - Personal exposure was strongly influenced by outdoor benzene concentrations, was higher in the cold seasons than in warm seasons, and was not affected by gender, age, area of residence, or caseness. Personal benzene exposure and urinary excretion of S-PMA (but not of MA) were well correlated. Outdoor benzene levels were lower among participant controls compared to non-participants, but did not differ between participant and non-participant cases (aA participation bias was indeed present). A positive association between exposures to benzene and ELF-MF was observed. - Epidemiologic studies of paediatric cancer and estimates of environmental benzene exposure based on repeated seasonal measurements, although challenging, appear logistically feasible and acceptable to children and their parents. ### Strengths and limitations - To our knowledge, this is the first pilot study of childhood leukaemia and measured personal benzene exposure. Its also has the merit of having addressed a number of methodological problems besides logistic feasibility issues. - Due to logistic reasons and resource constraints, tThe study size was is very small. It must also be stressed that the The expected greater accuracy of measurement-based exposures estimates, compared to surrogate exposure proxies, does not necessarily correspond to increased construct validity; this is, especially true when measurements are used for retrospective post-diagnosis exposure assessments. #### **INTRODUCTION** Benzene is a ubiquitous air pollutant, that needs to be metabolized to become carcinogenic.[1-2] Benzene exposure and acute non lymphocytic leukaemia (AnLL) are causally related in adult humans, while there is limited evidence for an association between exposure to this agent and acute or chronic lymphocytic leukaemia, multiple myeloma, and non-Hodgkin's lymphoma.[3] Moreover, a dose-dependent association between benzene exposure and incidence of myelodysplastic syndrome has been observed among petroleum workers. [4] Exposure to benzene would increase the risk of <u>AnLL leukaemia</u> at levels of ≥40 ppm-years of occupational cumulative exposure, equivalent to a lifetime (76 years) environmental exposure of ≥120 ppb.[45] Due to the established carcinogenicity of benzene, WHO has not developed any guideline value for this chemical in air, while indicating that ambient benzene concentrations of 17, 1.7 and 0.17 $\mu g/m^3$ are associated with excess lifetime risks of leukaemia of 10^{-4} , 10^{-5} and 10^{-6} , respectively.[56-67] While it seems unlikely that benzene is a major cause of leukaemia in the general population exposed in the ppb range, children may represent a subpopulation with increased susceptibility-on intake or on key pharmacokinetic / pharmacodynamic processes. [1, 3] Childhood leukaemias have distinctive features compared to leukaemias in adults. The major subtypes are acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML), accounting for 80% and 15% of cases aged 0 to 14 years in white populations respectively.[8] Both subtypes are thought to develop through a first initiating event *in utero* (e.g. the TEL-AML1 gene fusion whose prevalence in newborns has been estimated at around 1% while it is observed in 25% of ALL cases) followed by further postnatal genetic changes.[8] The "second hit" might consist of additional idiopathic chromosomal translocations, as well as of exposures to biological, chemical or physical agents in precursor B cell acute lymphoblastic leukaemia (pre-B ALL) and some cases of acute myeloid leukaemia (AML), a first initiating genetic event has been shown to occur *in utero*, at a rate of up to 1% (for TEL-AML1 translocations in pre-B ALL). Further genetic changes are required to create a malignant clone.[9] Ionizing radiation, benzene, alkylators and topoisomerase II inhibitors are among the few confirmed environmental risk factors for AML, while delayed, dysregulated responses to common infections are likely to play a major role in the conversion of pre-leukemic clones into overt ALL.[78-9] Findings from available studies of benzene and childhood leukaemia are inconsistent, possibly due to the use of indirect estimates of exposure and lack of analyses by leukaemia subtype.[810] To advance current understanding of benzene health effects and susceptibility, studies of paediatric cancers that include estimates of environmental exposure to benzene, rather than surrogate exposure indicators, have been recommended.[911] Major challenges in pursuing this suggestion include the space- and time-variability of ambient benzene levels, the low exposure levels in children, and the inherent susceptibility of case-control studies (the design of choice for etiological studies of rare disease like childhood cancer) to selection and information bias. We evaluated the logistic feasibility of an assessment of benzene exposure based on repeated seasonal weekly measurements in breathing zone air samples and outside the children's dwellings, with concurrent determinations of cotinine, *t-t*-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) in urine, in a pilot investigation within an Italian case-control study on environmental risk factors for childhood leukaemia (SETIL). Additional objectives of the pilot study were: - to investigate the relationship between level personal exposure to benzene and putative determinants (atmospheric benzene, second-hand tobacco smoke, individual traits); - to assess the performance of t-t-muconic acid (MA), and sulpho-phenylmercapturic acid (S-PMA) as benzene biomarkers in children; - to verify the occurrence of participation bias from differential adhesion to the benzene measurement study, and estimate the amount and direction of the distortion; - to check whether exposures to benzene and to extremely low frequency magnetic fields (ELF-MF) were correlated, and might eventually exert reciprocal confounding effects on the relationship with childhood leukaemia. #### **METHODS** #### Study population Incident cases of childhood leukaemia from 14 Italian regions, aged 0 to 10 years at diagnosis in 1998-2001, were eligible for enrolment in the SETIL study. Cases were ascertained through the national registry run by the Association of Paediatric Haematology and Oncology (AIEOP). Controls, matched to cases (2:1 ratio) on gender, date of birth, and region, were randomly selected from population lists. Information on several items concerning the children, their next-of-kin and dwellings, was collected by interview of parents. All interviewed families were invited to participate in a measurement study of indoor ELF-MF, while subsets of participants were asked to join two side-investigations, on exposure to gamma radiation and benzene, respectively. Eligibility for the benzene pilot study was restricted to 108 childhood leukaemia cases from seven Italian provinces (Turin, Milan, Florence, Rome, Catania, Palermo, and Cagliari), diagnosed between July 2000 and December 2001, and 194 matched controls. The study protocol was approved by the Piedmont Ethical Committee on 14 January 2002. ## Sampling strategy and devices Due to the high daily and seasonal variability of atmospheric benzene concentrations, the protocol called for four repeated seasonal one-week samplings of breathing zone air per child over one year ("personal" air samples), with concurrent collection of urine samples and atmospheric air samples in proximity of the children's homes ("outdoor" air samples). Outdoor air sampling would also be performed, with an identical strategy, near the homes of all eligible non-participants. To study the day-to-day variability in exposure, 24-h repeated personal and indoor samples during four season-specific weeks would be collected from a subset of children and related homes. Personal air samples were collected by passive samplers (Radiello® radial symmetry diffusive sampler) worn by the child during the day and placed at the bedside at night. Radiello® samplers were also used to collect outdoor air samples, placed near the entrance of the dwellings (within 1 meter), at a vertical distance from the ground suitable to avoid infringements (2-2.5 m), stored in a plastic case to avoid rain or snow. At retrieval, the adsorbing cartridges were removed from the diffusive bodies and placed into glass storage tubes. The ID code of the child, along with dates and times of sampling start and end, were recorded on self-adhesive labels stuck on the tubes. The cartridges were sent to a single laboratory (Fondazione Salvatore Maugeri, Padova) for the chemical analyses. Daily urine samples (10 ml, from the last micturition before sleep) were collected for 7 subsequent days (70 ml per week) during each seasonal survey. The daily samples were pooled in one plastic vial, and kept in the freezer compartment of the home refrigerator until collection at the end of the week. The vials were transported to the local research centre in cool bags, and stored at -5 °C until delivery (packed in dry ice and usually in 2 weeks) to the laboratory (Fondazione Salvatore Maugeri, Pavia). Field work began between March 2002 and January 2003, and ended in October 2003 - July 2004, depending on the local research centre. ## **Chemical determinations** Benzene concentrations in air sample were determined by an automated thermal desorber (ATD400, Perkin Elmer) coupled to a capillary gas-chromatography system (Autosystem XL, Perkin Elmer). The expanded uncertainty of the method, in the range 2.4 to 14.3 μ g/m³, was shown to be 18%.[$\frac{1012}{1}$] The limits of detection and quantification, over 1 week exposure, are 0.05 μ g/m³ and 0.1 μ g/m³. The urine analyses were performed using a high pressure liquid chromatography system (Alliance 2690, Waters) equipped with a spectrometric (SM) detector (ZQ, Waters) following a preliminary step of purification of the samples on
pre-activated solid phase extraction (SPE) cartridges. The limit of detection (LOD), coefficient of variation (CV) and accuracy of the method were: LOD = 1 μ g/L, CV % = (1.22)-(1.10), accuracy % = (- 2.39)-(3.36) for S-PMA; LOD = 20 μ g/L, CV % = (1.33)-(1.06), accuracy % = (- 2.18)-(3.27) for MA; LOD = 1 μ g/L, CV % = (1.25)-(1.09), accuracy % = (- 2.29)-(3.33) for cotinine. Further details are provided in Appendix 1. The chemical determinations were completed by May 2005. ## Statistical analyses Measurements below the chemical-specific detection limits were assigned half such values and included in the analyses. The relationships between personal exposure to benzene and putative determinants (as well as between urinary excretion of benzene metabolites, benzene intake, and other covariates) were assessed by generalized least squares (GLS) models for repeated measurements (STATA v. 11, xtreg procedure). The GLS model is: $y_{it} = \alpha + X_{it}B + u_{it} + e_{it}$, where i (1 to n) is the number of observations collected at time t (1 to 4) and u_{it} and e_{it} are the error components. As concentrations of benzene and urinary analytes were log-normally distributed, we always included in the models log-transformed dependent variables. We used the odds ratio (OR), calculated from generalized estimating equations (GEE) for repeated individual measurements (STATA v. 11, procedure xtgee), to estimate the association between benzene exposure and dichotomous variables such as case-control or participation status. The general equation of the GEE model is $g\{E(y_j)\}=x_j\beta$, where g is the link function, herein a logit function. We calculated a participation bias factor following the method suggested by Greenland [bias factor = $(S_{1a}*S_{0b})/(S_{0a}*S_{1b})$], where S_{1a} , S_{0a} , S_{1b} , and S_{0b} denote the probabilities of selection (i.e. full participation in the benzene study) for exposed cases, unexposed cases, exposed controls, and unexposed controls.[$\frac{1}{1}$] When the bias factor equals 1, there is no bias, when it is above or below 1 the true OR will be biased respectively upward or downward by the magnitude of this factor. Multiple regression models were used to analyze the relation between estimated exposures to benzene and ELF-MF. #### **RESULTS** ## Participation and sampling outcome Out of 108 cases and 194 controls eligible for inclusion, 46 cases and 60 controls (43% and 31%) agreed to take full part in the benzene side-study (Figure 1). In addition, the parents of 23 cases and 80 controls who refused the personal exposure assessment accepted the outdoor monitoring (partial participation = 21% and 41%). Altogether 1467 air samples were collected. A small percentage (2%) were lost during monitoring (22 samplers stolen, 2 sampler plates broken, 3 cartridges lost), transport (8 missing labels) or chemical analysis (2 cartridges broken on arrival at the laboratory; 1 sample lost due to equipment failure). Benzene measurements from the day-to-day variability sub-study (19% of the total) could not be used because only four control children accepted the 24-h sampling scheme, and were replaced by the calculated weekly averages. A further 20% of benzene measurements was removed from the data-set due to lack of compliance with the study protocol (indoor samples collected in place of the personal ones from children refusing to wear the sampler; time-or place-mismatch of personal and outdoor samples; "orphan" personal or outdoor samples; duplicate season-specific measurements; non-participants replaced with children ineligible for the benzene side-study]. For the same reasons, 107 out of 417 chemical determinations in urine (26%) were discarded. Three cases and 5 controls were excluded from one or more analyses due to lack of complete measurement sets in all seasonal series and, although 89% and 83% of full-participant cases and controls did adhere to all four seasonal surveys, only 37% and 43% of them had four repeated analyzable observations. #### Personal characteristics of the children The families of cases participating in full to the benzene study had been interviewed on average 1.3 years (SD 0.47) after the date of diagnosis, and the control-families 1.5 years (SD 0.46) after the corresponding reference date. The delay between diagnosis and the first series of benzene measurements was 2 years (SD 0.53) for both cases and controls. Cases and controls were comparable in terms of gender, age, and father's attained educational level (Table 1). A higher proportion of controls than cases had both parents smoking, and control-mothers were more educated than case-mothers. There were similar proportions of only children in the case and control groups, while firstborn children were more frequent among controls than cases. Early schooling (day-care attendance of crèche) was more common in cases than in controls. At the time of the benzene survey, most children were still living in the home occupied at birth or in the house they moved into after birth but before the date of diagnosis (cases 95%; controls 91%). ## Level, variability, and determinants of personal exposure to benzene The analyses of level, variability and determinants of personal exposure to benzene were based on 43 cases (39 ALL and 4 AML) and 56 controls, with 261 valid pairs of benzene concentrations in breathing zone and outdoor air (110 from cases and 151 from controls). A large proportion of these children (35%) had a single pair of concurrent measurements, unevenly distributed by season, with a disproportionally high number of summer samples (30 out of 35, all but one from a single centre). The distributions, overall and by season, of benzene concentrations in personal and outdoor air samples, and of cotinine, MA and S-PMA in urine are described in Table 2. Personal exposure to benzene was log-normally distributed (Shapiro-Wilk test = 0.938, p<0.001), and the mean benzene level over the individual yearly averages was 3 μ g/m³ (0.92 ppb). The distribution of benzene outdoor concentration was skewed to the left in all seasons and the yearly averages were log-normally distributed as well (Shapiro-Wilk test = 0.948, p = 0.001); the average yearly benzene level near the children's homes was $2.7 \,\mu g/m^3$ (0.83 ppb). Both outdoor benzene concentrations and personal exposure levels were higher in the cold seasons (autumn-winter) than in the warm ones (spring-summer). The European limit for benzene in air (5 μ g/m³) was exceeded by 5% of the yearly average outdoor concentrations, and by 8% of the yearly average levels in breathing zone air samples. A large proportion of autumn and winter measurements were above 5 μ g/m³ (35% and 25% outdoor; 26% and 30% of the personal exposure estimates). Cases and controls had similar levels of personal exposure to benzene: the leukaemia OR for a unit increase (1 μ g/m³) in personal benzene exposure was 0.93 (95% CI 0.77-1.13) adjusting for gender, age at the benzene survey (2-4; 4-6; 6-12 years), cotinine in urine (μ g/g creatinine), season, and province of residence (Turin; Milan; Florence - Rome; Catania - Palermo - Cagliari). A similar lack of association was found between the odd of disease and benzene concentration outside the children's homes [OR 0.94 (95% CI 0.80-1.09)], controlling for gender, age, smoking habits of the parents at the interview (non-smokers, mother or father smoking; both parents smoking), season, and province of residence. Further adjustment for birth order and age at first schooling had no material effect on the observed leukaemia-benzene relationship [personal exposure: OR 0.92 (95% CI 0.75-1.13); outdoor benzene: OR 0.95 (95% CI 0.81-1.13)]. As cases and controls had comparable levels of benzene exposure, we carried out the analyses illustrated in the forthcoming paragraphs on the whole data-set, although always controlling for caseness. Urinary cotinine concentration (µg/g of creatinine) was higher in children of smoking parents compared to children of non-smokers, and children with both parents smoking excreted a larger amount of cotinine than children with one parent smoking (Appendix Table A). Cotinine levels were higher in winter than in other seasons, and higher in children from central and southern Italy (Florence, Rome, Palermo, Catania, Cagliari) than in children from northern provinces (Turin and Milan). The high between- *vs* within-subject R² ratio is worth noting. Personal benzene exposure was strongly influenced by outdoor benzene concentrations (Table 3-A), and apparently not affected by gender or age; the season showed a modifying effect, with increasing levels of personal exposure during autumn and winter; the fraction of variability explained by the model was higher for the within-subject component than for the between-subject one. Exposure to second-hand tobacco smoke (estimated by cotinine excretion or by parental smoking habits) showed a trivial influence on personal exposure to benzene. The inclusion of urinary cotinine (µg/g creatinine) in the model described in Table 3-A, slightly decreased its goodness of fit [R^2 overall = 0.46; Wald χ^2 =189.49; R^2 within = 0.55; R^2 between = 0.35; β (cotinine) = 0.012; 95% CI = -0.003; 0.03)]; an alternative model, including smoking habits of the parents, did not perform any better [R^2 overall = 0.46; Wald χ^2 =216.44; R^2 within = 0.52; R^2 between = 0.39; β (one parent smoking) = 0.14; 95% CI = -0.02; 0.31; β (both parents smoking) = 0.17; 95% CI = -0.06; 0.39]. Children from central Italy (Florence and Rome) tended to have lower benzene concentrations in breathing zone air samples compared to residents in other provinces, all other things being equal (Table 3-A), possibly because of residual confounding from lack of samples collected in Rome other than in summer. We tried to verify this hypothesis by
restricting the analyses to children with at least two series of measurements in different seasonal periods (cold and warm). The data-set reduced to 61 subjects (25 cases and 36 controls) and 220 pairs of personal-outdoor benzene measurements. Actually, children from Florence still showed (not significantly) lower levels of personal exposure to benzene (β = - 0.27; 95% CI = -0.56; 0.03; p =0.074) compared to children from Turin. In the restricted data-set, however, independent effects of both outdoor benzene and urinary cotinine levels on personal benzene exposure were observed (Table 3-B). #### Benzene intake and urinary excretion of benzene metabolites Ninety-eight children (43 cases and 55 controls) and 310 pairs of urine and breathing zone air measurements (138 from cases and 172 from controls) were available for the analyses of the urinary excretion of benzene metabolites (MA and S-PMA) in relation to personal exposure to benzene. Urinary concentrations of S-PMA (In µg/g creatinine) were related to personal exposure to benzene (Table 4, Model 1). Youngest children (2-4 years at the benzene survey) excreted higher level of S-PMA compared to children aged 6-12 years, all other conditions being equal, and urinary concentration of S-PMA were higher in samples collected during the cold seasons compared to spring samples. The model, however, explained just 19% of the overall S-PMA variability. In an alternative model, including outdoor benzene concentrations and urinary cotinine in place of personal benzene exposure, we also observed an effect of the nicotine biomarker on S-PMA excretion (Table 4, Model 2). On the contrary, neither benzene concentrations in breathing zone air samples, nor outdoor benzene concentrations or cotinine levels explained the intra- and inter-individual variability in urinary levels of MA, controlling for gender, age, season, area of residence, and caseness (data not shown). #### Bias due to differential participation Available for the analysis of participation bias were 66 cases (43 full-participant and 23 partial-participant) and 136 controls (56 and 80), with 652 measurements of outdoor benzene concentrations (135 and 175 from full-participant cases and controls; 81 and 261 from partial-participant cases and controls). Benzene concentrations near the homes of full-participant controls were significantly lower than those in proximity of partial-participants' dwellings (OR = 0.88; 95% CI 0.80-0.97), adjusting for gender, age, season and place of residence, while there was no difference in ambient benzene levels between participant and non-participant cases (OR = 0.95; 95% CI 0.82-1.09). As participation in the study was also associated with the case-control status, assuming a causal association between exposure and disease, a selection bias might ensue. However, as parents of more exposed controls were less willing to accept to be interviewed, an upward distortion would be expected, which is at odds with the apparent lack of association between personal benzene exposure and leukaemia risk in the current study. To the aim of the current analysis, personal exposure to benzene was dichotomized around the median (3.25 μ g/m³), the 75th percentile (4.34 μ g/m³) or 5 μ g/m³ (the current limit for airborne benzene in Europe). The amount and direction of bias were found to depend on the cut-point chosen (Appendix Table B), whereas no bias is expected when the exposure is categorized around the median (bias factor = 1.03), and biases in the opposite directions are predicted using cut-off at p75 and at 5 μ g/m³ (0.64 and 1.42, respectively). ## Relationship between exposures to benzene and ELF-MF Children with benzene and ELF-MF measurements made at the same house qualified for inclusion in the analysis of the relationship between estimated exposures to these agents. As only 35 cases and 46 controls met such criterion when benzene concentrations in breathing zone air samples were used as exposure indicator, we performed the analysis on 48 cases and 77 controls with place-comparable pairs of average yearly outdoor benzene concentration ($\mu g/m^3$) and 48 h TWAs of ELF-MF level in the child's bedroom (In μT). There was a positive association between estimated exposures to ELF-MF (dependent variable) and benzene (β = 0.177; 95% CI 0.06-0.29; p = 0.002); the multivariable regression model (including gender, age, province of residence, caseness, and participation in the benzene pilot study as covariates) explained 16% of the variability in the dependent variable [F (10, 114 df) = 2.13; p> F = 0.0271]. A steeper increase in ELF-MF level per unit increase in outdoor benzene concentration (β = 0.520; 95% CI 0.09-0.95; p = 0.019) was seen among the 81 children fully participating in the benzene pilot-study compared to the 44 partial-participants (Appendix Table C). Similar results, with a more accentuated increase in indoor magnetic induction level per unit increase in outdoor benzene concentration [β = 0.272; 95% CI = 0.09-0.45; p(t) = 0.003; R² = 0.19], were observed in the restricted data-set of 86 children with \geq 2 weekly samplings in alternate seasons. #### DISCUSSION We have carried out a pilot case-control study of childhood leukaemia and exposure to benzene assessed by repeated individual measurements made on average two years after diagnosis. The pilot study included side-investigations aimed at evaluating the performance of two biological indicators of benzene exposure in children, at estimating amount and direction of a possible participation bias, and at assessing the relation between estimated exposures to benzene and ELF magnetic fields. Due to the relatively low incidence of childhood cancers (10-15 for 100,000 person-years in the 0-14 year range in most industrialized countries), the case-control approach is the design of choice for analytical epidemiologic studies about potential risk factors for these diseases. Such a study design, however, is inherently prone to measurement errors stemming from the retrospective reconstruction of the exposures of interest, and to differential participation leading to control samples not representative of the study base. Therefore, findings from observational epidemiologic studies of postulated determinants for childhood malignancies are often inconsistent and always require a cautious and thoughtful interpretation.[1214] Although based on small numbers, some of the findings from the current study have a certain factual and methodological interest. Repeated samplings of breathing and outdoor air are indeed needed to account for the seasonal variability in environmental benzene levels.[1315-1416] On average, children participating in the current study appear to experience mean yearly levels of personal exposure to benzene not exceeding the European guidelines (although 8% percent of the yearly mean levels were above 5 μ g/m³). What we *a priori* considered the main sources of benzene exposure for children (ambient benzene levels and second-hand tobacco smoke) explained no more than half of the overall variability in personal exposure, which indicates the need to identify other sources of exposure particularly relevant, perhaps, during the cold seasons. In fact, in autumn-winter compared to spring-summer, we observed higher levels of personal exposure to benzene, of urinary cotinine and of S-PMA excretion, all other things being equal. These findings might be due to the lower ventilation rates in homes and schools during the cold seasons, to winter-specific sources of indoor benzene concentrations not considered in the current survey (e.g. fireplaces or other combustion sources), and/or to the seasonal variability in daily patterns of time spent in different micro-environments (e.g. within cars or buses).[4517] Some case-control studies have suggested an association between exposure to traffic density and childhood leukaemia;[1618-1921] however, negative findings have also been reported.[2022-2325] Positive associations between incidence of ALL in children and residential proximity to petrol stations were observed in three case—control studies.[2123, 2426-2527] An increased risk of childhood leukaemia in relation to estimated exposure to benzene was observed in a small Italian study,[2628] but not in a much larger case-control study carried out in Denmark and based on a sophisticated and validated exposure modelling.[2729] To our knowledge there is no previous study of childhood leukaemia and measured personal benzene exposure. Moreover, as only children aged 0 to 10 years at diagnosis were eligible for the SETIL study, the large majority of cases included in the current investigation were pre-B ALL. Cases and controls did not differ in terms of exposure to benzene, estimated either by benzene level in personal air samples or through outdoor benzene concentration, but the interpretation of this finding is hampered by the retrospective exposure assessment and the low statistical power of this preliminary investigation. That notwithstanding, due to the design based on repeated individual observations, the risk estimates have quite narrow confidence intervals. Thus the findings from this pilot study, in accordance with the limited evidence for an association between exposure to benzene and ALL,[3-__45] might also suggest that the levels of benzene exposure experienced by children living in Italian towns do not entail a detectable increase in the risk of ALL. years of life, and one piece of supporting evidence is the consistent observation of an inverse association between ALL <u>risk</u> and day-care attendance.[2830] Studies of childhood ALL and birth order, on the other hand, have provided inconsistent result.[2931] Neither age at first schooling, etiologic role of altered patterns of infections and related immune stimulation during the first nor birth order confounded the relation between
childhood leukaemia and indicators of benzene exposure in the current study. S-PMA concentration measured in repeated weekly samples of the last micturition before sleep was found to reflect personal exposure to benzene, although the available covariates explained a small fraction of the within- and between-subject variability of this benzene metabolite. This is a quite surprising result, considering that S-PMA is believed to represent less than 1% of urinary benzene metabolites for exposures to benzene at air concentrations between 0.1 and 10 ppm.[3032] Benzene exposure proved not able to explain the variability of MA urinary excretion observed in our children, consistent with findings from a previous Italian study.[3133] The low statistical power of the study, the low level of benzene exposure, and the lack of adjustment for the confounding effect of dietary intake of sorbic acid (a common food additive), may explain this finding.[3234] Full-participation rates were low, in line with a general tendency to decreasing participation rates, especially in epidemiological studies requiring adherence to complex measurement protocols.[14, 35] higher among cases than controls. That nNotwithstanding, the outdoor monitoring was accepted by a fairly satisfactory proportions of children families with measured outdoor benzene concentrations (6164% and 7072% of eligible cases and controls). The degree of partial-participation was lower among non-participant cases (21%) than among non-participant controls (41%). This is an encouraging result, given the strong correlation between personal benzene exposure and ambient benzene level observed in the current study. We observed a differential participation bias, which underscores the need to plan parallel bias analyses in any case-control study.[3336] The dependence of the participation bias factor on the cut-point chosen to dichotomize the exposure variable is of methodological interest. The positive association between the 48 h TWA of ELF-MF induction in the child's bedroom and the average yearly concentrations of outdoor benzene will need consideration in the interpretation of findings from the analyses of childhood leukaemia risk in relation to 50 Hz MF in the SETIL case-control study. Incidental failures during sample collection, transport or chemical analysis accounted for a negligible proportion of lost air or urine samples. However, substantial percentages of chemical measurements could not be included in current analyses because of misunderstanding of the sampling protocol. The day-to-day variability sub-study was clearly too demanding to be acceptable. In conclusion, the current pilot study suggests that epidemiologic studies of childhood leukaemia risk and measurement-based estimates of exposure to benzene are challenging but logistically feasible (provided that the study protocol specifies every single sampling detail and nothing is considered so obvious as to be omitted). Such an exposure assessment method could be considered by epidemiologists willing to involve in the "genome - exposome" approach to gain further insight into the relationship between benzene exposure and childhood leukaemia risk, with priority given to AML.[42, 3437-39] Due to the low incidence rates of AML in children, however, international multi-centre studies are needed to address this topic. #### **ACKNOWLEDGEMENTS** The authors acknowledge the relevant contributions provided by Dr. Vincenzo Cocheo, Dr. Sergio Ghittori and Dr. Luciano Maestri (Fondazione Salvatore Maugeri) whose untimely death prevented their seeing the results of this study. The authors thank Prof. Lorenzo Gafà for his strong support to the carrying out of the research in Sicily, Caterina Boaretto (Fondazione Salvatore Maugeri) for her skilful collaboration in the analysis and quality control of the air samples, along with Patrizia Legittimo, Anna Maria Badiali, Cristina Fondelli, Alessandra Benvenuti (Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence); Paolo Guidotti (ITI, Florence); Giuliana Buscema (Italian Cancer League, Ragusa Section), Simona Trapani, Rosalia Maria Valenti (University of Palermo), Vanda Macerata (CPO Piemonte) for data collection, recording, and quality control, along with Dr. Susan Richman for the language revision. ### **FUNDING** The current investigation was co-funded by the Italian Ministry of Health (passive samplers and chemical determinations), the Italian Association for Research on Cancer along with the Ministry of University and Research (personnel, travel, consumables, and computing), and the Piedmont Region "Ricerca Sanitaria Finalizzata" (statistical analyses). ## **COMPETING INTERESTS** None. #### **REFERENCES** - Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for benzene. Atlanta, GA U.S. Department of Health and Human Services, Public Health Service 1997. - 2. Smith MT, Zhang L, McHale CM, et al. Benzene, the exposome and future investigations of leukemia etiology. *Chem Biol Interact* 2011;192:155–59. - 3. International Agency for Research on Cancer (IARC). A review of human carcinogens. F. Chemical agents and related occupations. Lyon (France): IARC Press, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 100, 2012. - 3.4. Schnatter AR, Glass DC, Tang G, Irons RD, Rushton L. Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. *J Natl Cancer Inst* 2012;104:1724-1737. - 4.5. Environmental Protection Agency (EPA). Carcinogenic effects of benzene: an update. Washington, DC: National Center for Environmental Health, Office of Research and Development, EPA/600/P-97/001F, 10 April 1998. - 5.6. World Health Organization (WHO). Benzene. In: Air quality guidelines for Europe, second edition. Copenhagen: WHO Regional Publications, European Series, No. 91 2000. - 6.7. World Health Organization (WHO). Exposure to benzene: a major public health concern. Geneva: WHO Document Production Services 2010. - 8. Eden T. Aetiology of childhood leukemia. *Cancer Treat Rev* 2010;3:286–97. - 7-9. Wiemels J. Perspectives on the causes of childhood leukemia. *Chem Biol Interact* 2012;196:59-67. - 8-10. Pyatt D, Hays S. A review of the potential association between childhood leukemia and benzene. *Chem Biol Interact* 2010;184:151-64. - 9-11. Smith MT. Advances in understanding benzene health effects and susceptibility. *Annu Rev*Public Health 2010;31:133–48. - 40.12. Cocheo C, Boaretto C, Pagani D, et al. Field evaluation of thermal and chemical desorption BTEX radial diffusive sampler Radiello* compared with active (pumped) samplers for ambient air measurements. *J Environ Monit* 2009;11: 297-306. - 41.13. Greenland S. Basic methods for sensitivity analysis and external adjustment. In: Rothman KJ, Greenland S (Eds). *Modern Epidemiology*. 2nd ed. Philadelphia: Lippincott, Williams & Wilkins: 1998:343–58. - <u>12.14.</u> Linet MS, Wacholder S, Hoar Zahm S. Interpreting epidemiologic research: lessons from studies of childhood cancer. *Pediatrics* 2003;112:218-32. - <u>13.15.</u> Fuselli S, De Felice M, Morlino R, Turrio-Baldassarri L. A three year study on 14 VOCs at one site in Rome: levels, seasonal variations, indoor/outdoor ratio and temporal trends. *Int J Environ Res Public Health* 2010;7:3792-803. - 14.16. Regione Toscana. Progetto INDOOR: studio sui comfort e sugli inquinanti fisici e chimici nelle scuole (2004-2006). Firenze: Regione Toscana, Rapporti di Ricerca 371.7109455 2011; http://www.regione.toscana.it/regione/export/RT/sito-RT/Contenuti/sezioni/salute/visualizza asset.html 128139851.html (last accessed 30 July 2012). - 45.17. Fondelli MC, Bavazzano P, Grechi D, et al. Benzene exposure in a sample of population residing in a district of Florence. *Sci Tot Environ* 2008;392:41-9. - <u>16.18.</u> Savitz D, Feingold L. Association of childhood cancer with residential traffic density, *Scand J Work Environ Health* 1989;15:360–3. - <u>17.19.</u> Feychting M, Svensson D, Ahlbom A. Exposure to motor vehicle exhaust and childhood cancer. *Scand J Work Environ Health* 1998;24:8-11. - 18.20. Weng HH, Tsai SS, Chen CC, et al. Childhood leukemia development and correlation with traffic air pollution in Taiwan using nitrogen dioxide as an air pollutant marker. *J Toxicol Environ Health A* 2008;71:434-8. - 19.21. Amigou A, Sermage-Faure C, Orsi L, et al. Road traffic and childhood leukemia: the ESCALE study (SFCE). *Environ Health Perspect* 2011;119:566–72. - 20.22. Langholz B, Ebi K, Thomas D, Peters J, London S. Traffic density and the risk of childhood leukemia in a Los Angeles case–control study. *Ann Epidemiol* 2002: 12: 482–7. - 21.23. Steffen C, Auclerc MF, Auvrignon A, et al. Acute childhood leukemia and environmental exposure to potential sources of benzene and other hydrocarbons: a case-control study. **Occup Environ Med 2004;61:773–8.** - 22.24. Reynolds P, Von Behren J, Gunier RB, et al. Residential exposure to traffic in California and childhood cancer. *Epidemiology* 2004;15: 6–12. - 23.25. Von Behren J, Reynolds P, Gunier RB, et al. Residential traffic density and childhood leukemia risk. *Cancer Epidemiol Biomarkers Prev* 2008;17:2298–301. - 24.26. Brosselin P, Rudant J, Orsi L, et al. Acute childhood leukemia and residence next to petrol stations and automotive repair garages: the ESCALE study (SFCE). *Occup Environ Med* 2009;66:598–606. - <u>25.27.</u> Weng HH, Tsai SS, Chiu HF, et al. Childhood leukemia and traffic air pollution in Taiwan: petrol station density as an indicator. *J Toxicol Environ Health A* 2009;72:83-7. - <u>26-28.</u> Crosignani P, Tittarelli A, Borgini A, Berrino F. Childhood leukemia and road traffic: a population-based case–control study. *Int J Cancer* 2004;108:596–9. - 27.29. Raaschou-Nielsen
O, Hertel O, Thomsen BL, Olsen JH. Air pollution from traffic at the residence of children with cancer. *Am J Epidemiol* 2001;153:433–43. - 28.30. Urayama KY, Buffler PA, Gallagher ER, et al. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. *Int J Epidemiol* 2010;39:718-32. - 29.31. Von Behren J, Spector LG, Mueller BA, et al. Birth order and risk of childhood cancer: a pooled analysis from five U.S. studies. *Int J Cancer* 2011;128:2709-16. - 30.32. Kim S, Vermeulen R, Waidyanatha S, et al. Modeling human metabolism of benzene following occupational and environmental exposures. *Cancer Epidemiol Biomarkers Prev* 2006;15:2246–52. - <u>31.33.</u> Protano C, Guidotti M, Manini P, et al. Benzene exposure in childhood: role of living environments and assessment of available tools. *Environ Int* 2010;36:779–87. - 34. Negri S, Bono R, Maestri L, et al. High-pressure liquid chromatographic–mass spectrometric determination of sorbic acid in urine: verification of formation of *trans,trans*-muconic acid. *Chem Biol Interact* 2005;153-154:243-6. - 32.35. Hatch EE, Kleinerman RA, Linet MS, et al. Do confounding or selection factors of residential wiring codes and magnetic fields distort findings of electromagnetic fields studies? Epidemiology 2000;11:189–198. - 33.36. Lash Tl, Fox MF, Fink AK. Applying quantitative bias analysis to epidemiologic data. Springer Science + Business Media, LLC 2009. - 37. Wild CP. Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. *Cancer Epidemiol Biomarkers Prev* 2005;14:1847–50. - 38. Rappaport SM, Smith MT. Environment and disease risks. Science 2010;330:460-461. - 34.39. Wild CP. The exposome: from concept to utility. Int J Epidemiol 2012;41:24-32. Formatted: Font: Italic Table 1. Children included in the pilot study by selected characteristics | | | Cases | | Cont | Controls | | |-----------------------------|---|-------|-----|------|----------|--| | | | N | % | N | % | | | Gender | Female | 25 | 58 | 30 | 54 | | | Gender | Male | 18 | 42 | 26 | 46 | | | | [2,4) years | 5 | 12 | 9 | 16 | | | Age at the survey | [4,6) years | 21 | 49 | 16 | 29 | | | | [6,12] years | 17 | 40 | 31 | 55 | | | | Turin | 7 | 16 | 9 | 16 | | | | Milan | 8 | 19 | 13 | 23 | | | | Florence | 3 | 7 | 5 | 9 | | | Residence [*] | Rome | 14 | 33 | 15 | 27 | | | | Catania | 3 | 7 | 5 | 9 | | | | Palermo | 4 | 9 | 6 | 11 | | | | Cagliari | 4 | 9 | 3 | 5 | | | | None | 20 | 47 | 27 | 48 | | | Davis at any alice of | One | 16 | 37 | 18 | 32 | | | Parent smoking [§] | Both | 4 | 9 | 11 | 20 | | | | Missing | 3 | 7 | 0 | - | | | | No qualification | - | - | 1 | 2 | | | Father's | Primary school | 17 | 40 | 21 | 38 | | | education§ | High school | 17 | 40 | 24 | 43 | | | education | University degree | 6 | 14 | 10 | 18 | | | | Missing | 3 | 7 | - | - | | | | No qualification | | - | - | - | | | Mother's | Primary school | 19 | 44 | 17 | 30 | | | education [§] | High school | 15 | 35 | 26 | 46 | | | education | University degree | 9 | 21 | 13 | 23 | | | | Missing | - | | - | - | | | | Only child | 10 | 23 | 12 | 21 | | | Birth order [§] | First born | 10 | 23 | 20 | 36 | | | | Second born or higher birth order | 23 | 53 | 24 | 43 | | | | No schooling yet | 15 | 35 | 16 | 29 | | | Age at first | <3 years (crèche) | 14 | 33 | 9 | 16 | | | schooling [§] | [3,6) years (preschool) | 14 | 33 | 30 | 54 | | | | [6-7] years (primary school) | 0 | - | 1 | 2 | | | 11aa.a.tha.tha. | Occupied since birth | 28 | 65 | 39 | 70 | | | Home at the time | Moved into after birth & before diagnosis | 13 | 30 | 12 | 21 | | | of the benzene | Moved into after diagnosis & before interview | 1 | 2 | 5 | 9 | | | survey | Moved into after interview | 1 | 2 | - | - | | | Total | | 43 | 100 | 56 | 100 | | | | | | | | | | ^{*}At the time of diagnosis or the corresponding reference date for controls; §Information reported at the interview; ^The ELF magnetic fields measurements, if the parents agreed, were made at the time of the interview. Table 2. Benzene concentration in personal and outdoor air samples, and urine level of cotinine and benzene metabolites by season and overall | | Ob - (#) | | CD. | 6 | G-SD M | D 41 | Percentiles | | 5 | | |---|----------|--------|--------|--------|--------|-------|-------------|--------|--------|---------| | Benzene in personal air samples (μg/m³) | Obs (#) | Mean | an SD | G-mean | | Min | p25 | p50 | p75 | Max | | Spring | 57 | 2.51 | 1.89 | 2.10 | 1.75 | 0.60 | 1.50 | 1.82 | 3.11 | 11.12 | | Summer | 86 | 2.26 | 1.45 | 1.90 | 1.82 | 0.47 | 1.25 | 1.85 | 3.10 | 8.13 | | Autumn | 62 | 4.31 | 2.60 | 3.73 | 1.57 | 0.92 | 2.939 | 3.70 | 5.17 | 18.47 | | Winter | 56 | 4.04 | 1.78 | 3.67 | 1.73 | 1.55 | 2.34 | 4.00 | 5.24 | 9.03 | | Individual yearly averages | 99 | 3.00 | 1.45 | 2.66 | 1.67 | 0.75 | 2.05 | 2.90 | 3.83 | 9.00 | | Benzene in outdoor air samples (μg/m³) | | | | | | | | • | -1 | | | Spring | 57 | 2.29 | 1.30 | 1.93 | 1.84 | 0.48 | 1.20 | 1.91 | 3.15 | 5.67 | | Summer | 86 | 1.94 | 1.20 | 1.65 | 1.75 | 0.39 | 1.12 | 1.58 | 2.28 | 6.92 | | Autumn | 62 | 3.99 | 2.58 | 3.05 | 1.92 | 0.08 | 1.93 | 3.42 | 5.63 | 11.18 | | Winter | 56 | 3.80 | 1.86 | 3.25 | 2.35 | 0.15 | 2.40 | 3.66 | 5.20 | 8.31 | | Individual yearly averages | 99 | 2.70 | 1.41 | 2.33 | 1.78 | 0.27 | 1.59 | 2.37 | 3.63 | 6.92 | | Cotinine (µg/ g creatinine) | | | | | | | | • | -1 | • | | Spring | 78 | 3.92 | 7.04 | 1.91 | 3.26 | 0.05 | 1.00 | 1.94 | 3.50 | 49.0 | | Summer | 78 | 3.20 | 5.52 | 1.50 | 3.59 | 0.09 | 0.82 | 1.68 | 3.71 | 41.4 | | Autumn | 76 | 4.54 | 8.51 | 1.92 | 3.92 | 0.05 | 1.20 | 1.93 | 4.30 | 48.7 | | Winter | 74 | 4.36 | 7.38 | 2.32 | 3.01 | 0.10 | 1.20 | 2.30 | 4.80 | 53.5 | | Individual yearly averages | 98 | 3.73 | 5.99 | 2.14 | 2.67 | 0.30 | 1.08 | 2.09 | 3.58 | 41.9 | | MA (μg/g creatinine) | | | | | | | | • | -1 | • | | Spring | 81 | 104.22 | 69.28 | 87.43 | 1.79 | 17.00 | 60.27 | 82.00 | 126.99 | 349.00 | | Summer | 79 | 140.40 | 226.73 | 92.30 | 2.16 | 13.33 | 56.54 | 83.00 | 131.76 | 1680.00 | | Autumn | 76 | 128.24 | 124.04 | 99.57 | 1.94 | 30.21 | 60.16 | 102.48 | 147.21 | 893.04 | | Winter | 74 | 119.09 | 100.15 | 95.30 | 1.86 | 26.00 | 65.00 | 86.00 | 129.00 | 591.00 | | Individual yearly averages | 98 | 116.65 | 84.89 | 101.06 | 1.62 | 46.42 | 73.33 | 92.66 | 122.50 | 593.42 | | S-PMA (μg/g creatinine) | | | | | | | | | | | | Spring | 81 | 1.13 | 0.60 | 1.00 | 1.62 | 0.21 | 0.80 | 1.00 | 1.30 | 3.70 | | Summer | 79 | 1.12 | 0.54 | 1.02 | 1.54 | 0.41 | 0.72 | 1.00 | 1.39 | 3.30 | | Autumn | 76 | 1.53 | 0.93 | 1.33 | 1.67 | 0.49 | 0.97 | 1.29 | 1.84 | 5.80 | | Winter | 74 | 1.37 | 0.60 | 1.23 | 1.64 | 0.15 | 1.00 | 1.20 | 1.60 | 3.40 | | Individual yearly averages | 98 | 1.28 | 0.50 | 1.20 | 1.43 | 0.56 | 0.94 | 1.20 | 1.46 | 2.97 | Confidential - to be submitted for publication Table 3. Personal exposure to benzene (In $\mu g/m^3$) by outdoor benzene concentration, cotinine, gender, age, season, province of residence, and caseness | A. Whole data-set (261 observation, 99 children) | | | | | | | |--|------------------|-------------|---------|--|--|--| | | β | 95% CI (β) | p(Z) | | | | | Outdoor benzene(μg/m³) | 0.151 | 0.12; 0.19 | <0.001 | | | | | Gender (male vs female) | -0.052 | -0.21; 0.11 | 0.522 | | | | | Age (at the benzene survey) | Reference [6-12] | years | | | | | | [2-4) years | 0.027 | -0.20; 0.25 | 0.814 | | | | | [4-6) years | -0.147 | -0.32; 0.03 | 0.098 | | | | | Season | Reference Spring | 3 | | | | | | Summer | -0.027 | -0.18; 0.12 | 0.717 | | | | | Autumn | 0.317 | 0.16; 0.48 | < 0.001 | | | | | Winter | 0.330 | 0.17; 0.49 | < 0.001 | | | | | Residence | Reference = Turi | n | | | | | | Milan | -0.038 | -0.28; 0.20 | 0.759 | | | | | Florence - Rome | -0.208 | -0.45; 0.03 | 0.091 | | | | | Catania - Palermo - Cagliari | -0.086 | -0.31; 0.13 | 0.443 | | | | | Case vs control | -0.039 | -0.19; 0.12 | 0.623 | | | | R^2 overall =0.4617 (within = 0.5364; between = 0.3603); Wald χ^2 =234.0; p<0.0001 ## B. Restricted data-set (≥2 repeats; 175 observations, 61 children) | | β | SE (β) | p(Z) | |--|------------------------------------|------------------|--------| | Outdoor benzene(µg/m³) | 0.123 | 0.020 | <0.001 | | Cotinine (µg/g creatinine) | 0.023 | 0.011 | 0.039 | | Gender (male vs female) | -0.057 | 0.116 | 0.623 | | Age (at the benzene survey) | Reference [6-12] | years | | | [2-4) years | 0.050 | 0.161 | 0.757 | | [4-6) years | -0.199 | 0.121 | 0.100 | | Season | Reference = Sprin | g | | | Summer | -0.055 | 0.081 | 0.494 | | Autumn | 0.382 | 0.087 | <0.001 | | Winter | 0.351 | 0.086 | <0.001 | | Residence | Reference = Turin | | | | Milan | 0.038 | 0.155 | 0.807 | | Florence - Rome | -0.323 | 0.195 | 0.099 | | Catania - Palermo - Cagliari | -0.00001 | 0.138 | 1.000 | | Case vs control | -0.073 | 0.107 | 0.498 | | R^2 overall =0.4858 (within = 0.5564; be | etween = 0.3544); Wald χ^2 =1 | 171.89; p<0.0001 | | Confidential - to be submitted for publication Table 4. Urinary excretion of S-PMA (In $\mu g/g$ creatinine) by personal benzene exposure (model 1) or outdoor benzene concentration plus urinary cotinine (model 2), controlling for gender, age, season, province of residence, and caseness | Model 1 (310 observations, 98 children) | β | 95% CI (β) | p(Z) | |--|--
--|--| | Personal benzene exposure (μg/m³) | 0.031 | 0.004; 0.06 | 0.024 | | Gender (male vs female) | -0.027 | -0.16; 0.11 | 0.695 | | Age (at the benzene survey) | Reference | [6-12] years | | | [2-4) years | 0.395 | 0.22; 0.57 | < 0.001 | | [4-6) years | -0.011 | -0.16; 0.14 | 0.890 | | Season | Reference | Spring | | | Summer | 0.043 | -0.09; 0.17 | 0.514 | | Autumn | 0.250 | 0.11; 0.38 | < 0.001 | | Winter | 0.156 | 0.01; 0.30 | 0.033 | | Residence | Reference | Turin | | | Milan | 0.007 | -0.21; 0.23 | 0.949 | | Florence - Rome | 0.013 | -0.18; 0.21 | 0.898 | | Catania - Palermo - Cagliari | 0.068 | -0.14; 0.27 | 0.514 | | Case vs control | 0.053 | 0.647 | 0.415 | | | | | | | R^2 overall =0.1894 (within = 0.1263; between = 0.2 | 2174); Wald χ ² =58.9 | 7; p <0.0001 | | | R ² overall =0.1894 (within = 0.1263; between = 0.2 | 2174); Wald χ ² =58.9 | 7; p <0.0001 | | | R ² overall =0.1894 (within = 0.1263; between = 0.2
Model 2 (214 observations, 98 children) | 2174); Wald $\chi^2 = 58.9$ | 95% CI (β) | p(Z) | | | | | p(Z)
0.605 | | Model 2 (214 observations, 98 children) | β | 95% CI (β) | | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) | β
0.009 | 95% CI (β)
-0.02; 0.04 | 0.605 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) | β
0.009
0.014
-0.012 | 95% CI (β)
-0.02; 0.04
0.001; 0.03 | 0.605
0.040 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) | β
0.009
0.014
-0.012 | 95% CI (β)
-0.02; 0.04
0.001; 0.03
-0.16; 0.14 | 0.605
0.040 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) | β
0.009
0.014
-0.012
Reference | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years | 0.605
0.040
0.875 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years | β
0.009
0.014
-0.012
Reference
0.308 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 | 0.605
0.040
0.875
0.008 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years | β
0.009
0.014
-0.012
Reference
0.308
0.055 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 | 0.605
0.040
0.875
0.008 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring | 0.605
0.040
0.875
0.008
0.516 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 | 0.605
0.040
0.875
0.008
0.516 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 0.200 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 | 0.605
0.040
0.875
0.008
0.516
0.582
0.012 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 | 0.605
0.040
0.875
0.008
0.516
0.582
0.012 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter Residence | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 Reference | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 Turin | 0.605
0.040
0.875
0.008
0.516
0.582
0.012
0.305 | | Model 2 (214 observations, 98 children) Outdoor benzene concentration (μg/m³) Cotinine (μg/g creatinine) Gender (male vs female) Age (at the benzene survey) [2-4) years [4-6) years Season Summer Autumn Winter Residence Milan | β 0.009 0.014 -0.012 Reference 0.308 0.055 Reference -0.040 0.200 0.082 Reference -0.053 | 95% CI (β) -0.02; 0.04 0.001; 0.03 -0.16; 0.14 [6-12] years 0.08; 0.54 -0.11; 0.22 Spring -0.18; 0.10 0.04; 0.36 -0.07; 0.24 Turin -0.28; 0.18 | 0.605
0.040
0.875
0.008
0.516
0.582
0.012
0.305 | Interviewed Cases (83%) (100%)Partial-Participants **Full-Participant** (outdoor only) (valid sample pairs) 23 (21%) 43 (40%) **Not Interviewed** Non-Participants **Full-Participants** (no sampling) (no valid sample pair) 39 (36%) 3 (3%) (17%)Interviewed Controls (71%) (100%) **Not Interviewed** (29%) Figure 1. Children eligible for inclusion and participation rates 90x119mm (300 x 300 DPI) Partial-Participants (outdoor only) 80 (41%) **Non-Participants** (no sampling) 54 (28%) **Full-Participant** (valid sample pairs) 56 (29%) **Full-Participants** (no valid sample pair) 4 (2%) ## Appendix 1 – Chemical determination: analytical conditions Benzene concentrations in air samples The main analytical conditions were the following: desorption at 320 °C for 10 min; overall split ratio 1:75; carrier gas nitrogen at 27 psi; column J&W PONA, 50 m, 0.2 mm id, 0.5 μ m film thickness; oven 35 °C for 1 min, 6 °C/min to 110 °C, 20 °C/min to 220 °C, 2 min. Urine analyses Pre-treatment and chromatographic conditions used for each analyte are described below. <u>S-PMA</u>. Pre-treatment of the urine sample (5 mL): calibration curve concentrations = 0, 5, 10, and 50 μ g/L; acidification with HCl; centrifugation (10 minutes at 3500 rpm); purification on SPE (Isolute C18 500 mg/3 mL). Chromatographic conditions: Mobile Phase = 60% acetic acid 1% and 40% methanol; Flow = 0.3 mL/min; Column = Symmetry C18 3.0 x 150 mm, 3.5 μ m (Waters); Column temperature = 29°C; Run time = 45 min; Volume injected = 21 μ L; MS Method = Single Ion Recording of mass 238.0 in ESI neg; LR = 0.3 μ g/L. <u>MA</u>. Pre-treatment of the urine sample (2 mL): calibration curve concentrations: 0, 50, 200, 500, 1000 μg/L; centrifugation (10 minutes at 3500 rpm); purification on SPE (Isolute SAX 500 mg/3mL). Chromatographic conditions: Mobile Phase = 78 % formic acid 0.2 % and 22 % methanol; Flow = 0.3 mL/min; Column= Symmetry C18 3.0 x 150 mm, 3.5 μm (Waters); Column temperature = 30°C; Run time = 30 min; Volume injected = 21 μL. MS Method: Single Ion Recording of mass 141.0 in ESI neg; LR = 7 μg/L. <u>Cotinine</u>. Pre-treatment of the urine sample (2 mL): calibration curve concentrations: 0, 10, 50, 250, 1000, 3000 μ g/L; basification with Ammonium Hydroxide ACS Reagent; centrifugation (10 minutes at 3500 rpm); purification on SPE (Isolute ENV + 50 mg/3mL). Chromatographic conditions: Mobile Phase = 75 % ammonium acetate 3.7mM and 25 % methanol; Flow = 0.3 mL/min; Column = Symmetry C18 3.0 x 150 mm, 3.5 μ m (Waters); Column temperature = 30°C; Run time = 33 min; Volume of sample injected = 21 μ L. MS Method: Single Ion Recording of mass 177.2 in ESI pos; LR = 0.3 μ g/L. Appendix Table A. Urinary cotinine levels (In $\mu g/g$ of creatinine) by smoking habits of the parents, gender, age, season, province of residence, and caseness (295 observations from 95 children) | | β | 95% CI (β) | p(Z) | |-----------------------------------|-----------------------|-----------------------------|----------| | Parental smoking habits | Reference Nonsmok | ers | | | One parent smoking | 0.852 | 0.50; 1.20 | <0.001 | | Both parents smoking | 1.685 | 1.22; 2.15 | <0.001 | | Gender (male vs female) | 0.028 | -0.31; 0.37 | 0.872 | | Age (at the benzene survey) | Reference [6-12] yea | ars | | | [2-4) years | 0.214 | -0.22; 0.65 | 0.338 | | [4-6) years | 0.111 | -0.27; 0.49 | 0.566 | | Season | Reference Spring | | | | Summer | -0.193 | -0.43; 0.05 | 0.116 | | Autumn | -0.015 | -0.26; 0.23 | 0.901 | | Winter | 0.260 | 0.02; 0.50 | 0.035 | | Residence | Reference Turin | | | | Milan | -0.348 | -0.90; 0.20 | 0.215 | | Florence - Rome | 0.636 | 0.14; 1.13 | 0.011 | | Catania - Palermo - Cagliari | 0.511 | 0.002; 1.02 | 0.049 | | Case vs control | 0.229 | -0.09; 0.55 | 0.164 | | R^2 overall =0.4213 (within = 0 | .0732; between = 0.51 | 50); Wald χ^2 =110.31; | p<0.0001 | # Appendix Table B. Participation bias factors calculated using different cut-points to dicothomize outdoor benzene concentrations | Cut-point = P | 50 = 3.25 μg/m ³ | Exposed | Not Exposed | Bias factor | |---------------|-------------------------------|---------|-------------|-------------| | Cacac | Participant | 18 | 25 | | | Cases | Non Participant | 11 | 12 | 1.03 | |
Controls | Participant | 28 | 28 | 1.05 | | Controls | Non Participant | 44 | 36 | | | Cut-point = P | $75 = 4.34 \mu \text{g/m}^3$ | Exposed | Not Exposed | Bias factor | | Cases | Participant | 4 | 39 | | | Cases | Non Participant | 7 | 16 | 0.64 | | Controls | Participant | 14 | 42 | 0.04 | | Controls | Non Participant | 26 | 54 | | | Cut-point = 5 | μg/m ³ | Exposed | Not Exposed | Bias factor | | Cases | Participant | 3 | 40 | | | Cases | Non Participant | 4 | 19 | 1.42 | | Controls | Participant | 4 | 52 | 1.42 | | Controls | Non Participant | 16 | 64 | | | | | | | | Appendix Table C. Relationship between estimated exposures to ELF-MF (48 h TWA in the child's bedroom, In μT) and to outdoor benzene (individual averages of repeated seasonal measurements, $\mu g/m^3$), controlling for gender, age, province of residence, caseness, and participation in the benzene pilot study (125 observations; 48 cases and 77 controls) | | β | 95% CI (β) | p (t) | |--------------------------------|----------------|-------------|-------| | Outdoor benzene (μg/m³) | 0.177 | 0.06; 0.29 | 0.002 | | Gender (male vs female) | -0.332 | -0.74; 0.08 | 0.112 | | Age (at diagnosis) | Reference [6-1 | .0] years | | | [0-2) years | 0.120 | -0.56; 0.80 | 0.728 | | [2-4) years | 0.166 | -0.38; 0.72 | 0.550 | | [4-6) years | 0.334 | -0.29; 0.96 | 0.295 | | Residence | Reference Turi | in | | | Milan | -0.007 | -0.65; 0.64 | 0.984 | | Florence-Rome | 0.135 | -0.50; 0.76 | 0.673 | | Catania-Palermo-Cagliari | 0.521 | -0.13; 1.17 | 0.116 | | Case vs control | -0.024 | -0.43; 0.38 | 0.908 | | Participant vs non participant | 0.520 | 0.09; 0.95 | 0.019 | F(10, 114 df) = 2.13; prob > F = 0.0271; $R^2 = 0.1577$ STROBE Statement—Checklist of items that should be included in reports of *case-control studies* | | Item
No | Recommendation | |------------------------|------------|---| | Title and abstract | 1★ | (a) Indicate the study's design with a commonly used term in the title or the abstract | | | | (b) Provide in the abstract an informative and balanced summary of what was done | | | | and what was found | | Introduction | | | | Background/rationale | 2★ | Explain the scientific background and rationale for the investigation being reported | | Objectives | 3★ | State specific objectives, including any prespecified hypotheses | | Methods | | | | Study design | 4★ | Present key elements of study design early in the paper | | Setting | 5★ | Describe the setting, locations, and relevant dates, including periods of recruitment, | | 8 | | exposure, follow-up, and data collection | | Participants | 6 * | (a) Give the eligibility criteria, and the sources and methods of case ascertainment | | 1 | | and control selection. Give the rationale for the choice of cases and controls | | | | (b) For matched studies, give matching criteria and the number of controls per case | | Variables | 7★ | Clearly define all outcomes, exposures, predictors, potential confounders, and effect | | | | modifiers. Give diagnostic criteria, if applicable | | Data sources/ | 8*★ | For each variable of interest, give sources of data and details of methods of | | measurement | | assessment (measurement). Describe comparability of assessment methods if there | | | | is more than one group | | Bias | 9★ | Describe any efforts to address potential sources of bias | | Study size | 10★ | Explain how the study size was arrived at | | Quantitative variables | 11★ | Explain how quantitative variables were handled in the analyses. If applicable, | | | | describe which groupings were chosen and why | | Statistical methods | 12★ | (a) Describe all statistical methods, including those used to control for confounding | | | | (b) Describe any methods used to examine subgroups and interactions | | | | (c) Explain how missing data were addressed | | | | (d) If applicable, explain how matching of cases and controls was addressed | | | | (\underline{e}) Describe any sensitivity analyses | | Results | | | | Participants | 13*★ | (a) Report numbers of individuals at each stage of study—eg numbers potentially | | | | eligible, examined for eligibility, confirmed eligible, included in the study, | | | | completing follow-up, and analysed | | | | (b) Give reasons for non-participation at each stage | | | | (c) Consider use of a flow diagram | | Descriptive data | 14*★ | (a) Give characteristics of study participants (eg demographic, clinical, social) and | | | | information on exposures and potential confounders | | | | (b) Indicate number of participants with missing data for each variable of interest | | Outcome data | 15*★ | Report numbers in each exposure category, or summary measures of exposure | | Main results | 16★ | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and | | | | their precision (eg, 95% confidence interval). Make clear which confounders were | | | | adjusted for and why they were included | | | | (b) Report category boundaries when continuous variables were categorized | | | | (c) If relevant, consider translating estimates of relative risk into absolute risk for a | | | | meaningful time period | | Other analyses | 17★ | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses | |------------------|-----|--| | Discussion | | | | Key results | 18★ | Summarise key results with reference to study objectives | | Limitations | 19★ | Discuss limitations of the study, taking into account sources of potential bias or imprecision. | | | | Discuss both direction and magnitude of any potential bias | | Interpretation | 20★ | Give a cautious overall interpretation of results considering objectives, limitations, | | | | multiplicity of analyses, results from similar studies, and other relevant evidence | | Generalisability | 21★ | Discuss the generalisability (external validity) of the study results | | Other informati | on | | | Funding | 22★ | Give the source of funding and the role of the funders for the present study and, if applicable, | | | | for the original study on which the present article is based | ^{*}Give information separately for cases and controls. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.